Metamath Proof Explorer


Theorem mplringd

Description: The polynomial ring is a ring. (Contributed by SN, 7-Feb-2025)

Ref Expression
Hypotheses mplringd.p P=ImPolyR
mplringd.i φIV
mplringd.r φRRing
Assertion mplringd φPRing

Proof

Step Hyp Ref Expression
1 mplringd.p P=ImPolyR
2 mplringd.i φIV
3 mplringd.r φRRing
4 1 mplring IVRRingPRing
5 2 3 4 syl2anc φPRing