Metamath Proof Explorer


Theorem mplcrngd

Description: The polynomial ring is a commutative ring. (Contributed by SN, 7-Feb-2025)

Ref Expression
Hypotheses mplcrngd.p P=ImPolyR
mplcrngd.i φIV
mplcrngd.r φRCRing
Assertion mplcrngd φPCRing

Proof

Step Hyp Ref Expression
1 mplcrngd.p P=ImPolyR
2 mplcrngd.i φIV
3 mplcrngd.r φRCRing
4 1 mplcrng IVRCRingPCRing
5 2 3 4 syl2anc φPCRing