Metamath Proof Explorer


Theorem mplcrng

Description: The polynomial ring is a commutative ring. (Contributed by Mario Carneiro, 9-Jan-2015)

Ref Expression
Hypothesis mplgrp.p P=ImPolyR
Assertion mplcrng IVRCRingPCRing

Proof

Step Hyp Ref Expression
1 mplgrp.p P=ImPolyR
2 eqid ImPwSerR=ImPwSerR
3 simpl IVRCRingIV
4 simpr IVRCRingRCRing
5 2 3 4 psrcrng IVRCRingImPwSerRCRing
6 eqid BaseP=BaseP
7 crngring RCRingRRing
8 7 adantl IVRCRingRRing
9 2 1 6 3 8 mplsubrg IVRCRingBasePSubRingImPwSerR
10 1 2 6 mplval2 P=ImPwSerR𝑠BaseP
11 10 subrgcrng ImPwSerRCRingBasePSubRingImPwSerRPCRing
12 5 9 11 syl2anc IVRCRingPCRing