Step |
Hyp |
Ref |
Expression |
1 |
|
mplgrp.p |
|- P = ( I mPoly R ) |
2 |
|
eqid |
|- ( I mPwSer R ) = ( I mPwSer R ) |
3 |
|
simpl |
|- ( ( I e. V /\ R e. CRing ) -> I e. V ) |
4 |
|
simpr |
|- ( ( I e. V /\ R e. CRing ) -> R e. CRing ) |
5 |
2 3 4
|
psrcrng |
|- ( ( I e. V /\ R e. CRing ) -> ( I mPwSer R ) e. CRing ) |
6 |
|
eqid |
|- ( Base ` P ) = ( Base ` P ) |
7 |
|
crngring |
|- ( R e. CRing -> R e. Ring ) |
8 |
7
|
adantl |
|- ( ( I e. V /\ R e. CRing ) -> R e. Ring ) |
9 |
2 1 6 3 8
|
mplsubrg |
|- ( ( I e. V /\ R e. CRing ) -> ( Base ` P ) e. ( SubRing ` ( I mPwSer R ) ) ) |
10 |
1 2 6
|
mplval2 |
|- P = ( ( I mPwSer R ) |`s ( Base ` P ) ) |
11 |
10
|
subrgcrng |
|- ( ( ( I mPwSer R ) e. CRing /\ ( Base ` P ) e. ( SubRing ` ( I mPwSer R ) ) ) -> P e. CRing ) |
12 |
5 9 11
|
syl2anc |
|- ( ( I e. V /\ R e. CRing ) -> P e. CRing ) |