| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mplgrp.p |
|- P = ( I mPoly R ) |
| 2 |
|
eqid |
|- ( I mPwSer R ) = ( I mPwSer R ) |
| 3 |
|
eqid |
|- ( Base ` P ) = ( Base ` P ) |
| 4 |
|
simpl |
|- ( ( I e. V /\ R e. CRing ) -> I e. V ) |
| 5 |
|
crngring |
|- ( R e. CRing -> R e. Ring ) |
| 6 |
5
|
adantl |
|- ( ( I e. V /\ R e. CRing ) -> R e. Ring ) |
| 7 |
2 1 3 4 6
|
mplsubrg |
|- ( ( I e. V /\ R e. CRing ) -> ( Base ` P ) e. ( SubRing ` ( I mPwSer R ) ) ) |
| 8 |
2 1 3 4 6
|
mpllss |
|- ( ( I e. V /\ R e. CRing ) -> ( Base ` P ) e. ( LSubSp ` ( I mPwSer R ) ) ) |
| 9 |
|
simpr |
|- ( ( I e. V /\ R e. CRing ) -> R e. CRing ) |
| 10 |
2 4 9
|
psrassa |
|- ( ( I e. V /\ R e. CRing ) -> ( I mPwSer R ) e. AssAlg ) |
| 11 |
|
eqid |
|- ( 1r ` ( I mPwSer R ) ) = ( 1r ` ( I mPwSer R ) ) |
| 12 |
11
|
subrg1cl |
|- ( ( Base ` P ) e. ( SubRing ` ( I mPwSer R ) ) -> ( 1r ` ( I mPwSer R ) ) e. ( Base ` P ) ) |
| 13 |
7 12
|
syl |
|- ( ( I e. V /\ R e. CRing ) -> ( 1r ` ( I mPwSer R ) ) e. ( Base ` P ) ) |
| 14 |
|
eqid |
|- ( Base ` ( I mPwSer R ) ) = ( Base ` ( I mPwSer R ) ) |
| 15 |
14
|
subrgss |
|- ( ( Base ` P ) e. ( SubRing ` ( I mPwSer R ) ) -> ( Base ` P ) C_ ( Base ` ( I mPwSer R ) ) ) |
| 16 |
7 15
|
syl |
|- ( ( I e. V /\ R e. CRing ) -> ( Base ` P ) C_ ( Base ` ( I mPwSer R ) ) ) |
| 17 |
1 2 3
|
mplval2 |
|- P = ( ( I mPwSer R ) |`s ( Base ` P ) ) |
| 18 |
|
eqid |
|- ( LSubSp ` ( I mPwSer R ) ) = ( LSubSp ` ( I mPwSer R ) ) |
| 19 |
17 18 14 11
|
issubassa |
|- ( ( ( I mPwSer R ) e. AssAlg /\ ( 1r ` ( I mPwSer R ) ) e. ( Base ` P ) /\ ( Base ` P ) C_ ( Base ` ( I mPwSer R ) ) ) -> ( P e. AssAlg <-> ( ( Base ` P ) e. ( SubRing ` ( I mPwSer R ) ) /\ ( Base ` P ) e. ( LSubSp ` ( I mPwSer R ) ) ) ) ) |
| 20 |
10 13 16 19
|
syl3anc |
|- ( ( I e. V /\ R e. CRing ) -> ( P e. AssAlg <-> ( ( Base ` P ) e. ( SubRing ` ( I mPwSer R ) ) /\ ( Base ` P ) e. ( LSubSp ` ( I mPwSer R ) ) ) ) ) |
| 21 |
7 8 20
|
mpbir2and |
|- ( ( I e. V /\ R e. CRing ) -> P e. AssAlg ) |