| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mplgrp.p |
⊢ 𝑃 = ( 𝐼 mPoly 𝑅 ) |
| 2 |
|
eqid |
⊢ ( 𝐼 mPwSer 𝑅 ) = ( 𝐼 mPwSer 𝑅 ) |
| 3 |
|
eqid |
⊢ ( Base ‘ 𝑃 ) = ( Base ‘ 𝑃 ) |
| 4 |
|
simpl |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑅 ∈ CRing ) → 𝐼 ∈ 𝑉 ) |
| 5 |
|
crngring |
⊢ ( 𝑅 ∈ CRing → 𝑅 ∈ Ring ) |
| 6 |
5
|
adantl |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑅 ∈ CRing ) → 𝑅 ∈ Ring ) |
| 7 |
2 1 3 4 6
|
mplsubrg |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑅 ∈ CRing ) → ( Base ‘ 𝑃 ) ∈ ( SubRing ‘ ( 𝐼 mPwSer 𝑅 ) ) ) |
| 8 |
2 1 3 4 6
|
mpllss |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑅 ∈ CRing ) → ( Base ‘ 𝑃 ) ∈ ( LSubSp ‘ ( 𝐼 mPwSer 𝑅 ) ) ) |
| 9 |
|
simpr |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑅 ∈ CRing ) → 𝑅 ∈ CRing ) |
| 10 |
2 4 9
|
psrassa |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑅 ∈ CRing ) → ( 𝐼 mPwSer 𝑅 ) ∈ AssAlg ) |
| 11 |
|
eqid |
⊢ ( 1r ‘ ( 𝐼 mPwSer 𝑅 ) ) = ( 1r ‘ ( 𝐼 mPwSer 𝑅 ) ) |
| 12 |
11
|
subrg1cl |
⊢ ( ( Base ‘ 𝑃 ) ∈ ( SubRing ‘ ( 𝐼 mPwSer 𝑅 ) ) → ( 1r ‘ ( 𝐼 mPwSer 𝑅 ) ) ∈ ( Base ‘ 𝑃 ) ) |
| 13 |
7 12
|
syl |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑅 ∈ CRing ) → ( 1r ‘ ( 𝐼 mPwSer 𝑅 ) ) ∈ ( Base ‘ 𝑃 ) ) |
| 14 |
|
eqid |
⊢ ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) = ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) |
| 15 |
14
|
subrgss |
⊢ ( ( Base ‘ 𝑃 ) ∈ ( SubRing ‘ ( 𝐼 mPwSer 𝑅 ) ) → ( Base ‘ 𝑃 ) ⊆ ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) ) |
| 16 |
7 15
|
syl |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑅 ∈ CRing ) → ( Base ‘ 𝑃 ) ⊆ ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) ) |
| 17 |
1 2 3
|
mplval2 |
⊢ 𝑃 = ( ( 𝐼 mPwSer 𝑅 ) ↾s ( Base ‘ 𝑃 ) ) |
| 18 |
|
eqid |
⊢ ( LSubSp ‘ ( 𝐼 mPwSer 𝑅 ) ) = ( LSubSp ‘ ( 𝐼 mPwSer 𝑅 ) ) |
| 19 |
17 18 14 11
|
issubassa |
⊢ ( ( ( 𝐼 mPwSer 𝑅 ) ∈ AssAlg ∧ ( 1r ‘ ( 𝐼 mPwSer 𝑅 ) ) ∈ ( Base ‘ 𝑃 ) ∧ ( Base ‘ 𝑃 ) ⊆ ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) ) → ( 𝑃 ∈ AssAlg ↔ ( ( Base ‘ 𝑃 ) ∈ ( SubRing ‘ ( 𝐼 mPwSer 𝑅 ) ) ∧ ( Base ‘ 𝑃 ) ∈ ( LSubSp ‘ ( 𝐼 mPwSer 𝑅 ) ) ) ) ) |
| 20 |
10 13 16 19
|
syl3anc |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑅 ∈ CRing ) → ( 𝑃 ∈ AssAlg ↔ ( ( Base ‘ 𝑃 ) ∈ ( SubRing ‘ ( 𝐼 mPwSer 𝑅 ) ) ∧ ( Base ‘ 𝑃 ) ∈ ( LSubSp ‘ ( 𝐼 mPwSer 𝑅 ) ) ) ) ) |
| 21 |
7 8 20
|
mpbir2and |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑅 ∈ CRing ) → 𝑃 ∈ AssAlg ) |