| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mplgrp.p |
⊢ 𝑃 = ( 𝐼 mPoly 𝑅 ) |
| 2 |
|
eqid |
⊢ ( 𝐼 mPwSer 𝑅 ) = ( 𝐼 mPwSer 𝑅 ) |
| 3 |
|
simpl |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑅 ∈ CRing ) → 𝐼 ∈ 𝑉 ) |
| 4 |
|
simpr |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑅 ∈ CRing ) → 𝑅 ∈ CRing ) |
| 5 |
2 3 4
|
psrcrng |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑅 ∈ CRing ) → ( 𝐼 mPwSer 𝑅 ) ∈ CRing ) |
| 6 |
|
eqid |
⊢ ( Base ‘ 𝑃 ) = ( Base ‘ 𝑃 ) |
| 7 |
|
crngring |
⊢ ( 𝑅 ∈ CRing → 𝑅 ∈ Ring ) |
| 8 |
7
|
adantl |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑅 ∈ CRing ) → 𝑅 ∈ Ring ) |
| 9 |
2 1 6 3 8
|
mplsubrg |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑅 ∈ CRing ) → ( Base ‘ 𝑃 ) ∈ ( SubRing ‘ ( 𝐼 mPwSer 𝑅 ) ) ) |
| 10 |
1 2 6
|
mplval2 |
⊢ 𝑃 = ( ( 𝐼 mPwSer 𝑅 ) ↾s ( Base ‘ 𝑃 ) ) |
| 11 |
10
|
subrgcrng |
⊢ ( ( ( 𝐼 mPwSer 𝑅 ) ∈ CRing ∧ ( Base ‘ 𝑃 ) ∈ ( SubRing ‘ ( 𝐼 mPwSer 𝑅 ) ) ) → 𝑃 ∈ CRing ) |
| 12 |
5 9 11
|
syl2anc |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑅 ∈ CRing ) → 𝑃 ∈ CRing ) |