Metamath Proof Explorer


Theorem mplsubrgcl

Description: An element of a polynomial algebra over a subring is an element of the polynomial algebra. (Contributed by SN, 9-Feb-2025)

Ref Expression
Hypotheses mplsubrgcl.w W=ImPolyU
mplsubrgcl.u U=S𝑠R
mplsubrgcl.b B=BaseW
mplsubrgcl.p P=ImPolyS
mplsubrgcl.c C=BaseP
mplsubrgcl.i φIV
mplsubrgcl.r φRSubRingS
mplsubrgcl.f φFB
Assertion mplsubrgcl φFC

Proof

Step Hyp Ref Expression
1 mplsubrgcl.w W=ImPolyU
2 mplsubrgcl.u U=S𝑠R
3 mplsubrgcl.b B=BaseW
4 mplsubrgcl.p P=ImPolyS
5 mplsubrgcl.c C=BaseP
6 mplsubrgcl.i φIV
7 mplsubrgcl.r φRSubRingS
8 mplsubrgcl.f φFB
9 eqid P𝑠B=P𝑠B
10 4 2 1 3 6 7 9 ressmplbas φB=BaseP𝑠B
11 9 5 ressbasss BaseP𝑠BC
12 10 11 eqsstrdi φBC
13 12 8 sseldd φFC