Description: An element of a polynomial algebra over a subring is an element of the polynomial algebra. (Contributed by SN, 9-Feb-2025)
Ref | Expression | ||
---|---|---|---|
Hypotheses | mplsubrgcl.w | |
|
mplsubrgcl.u | |
||
mplsubrgcl.b | |
||
mplsubrgcl.p | |
||
mplsubrgcl.c | |
||
mplsubrgcl.i | |
||
mplsubrgcl.r | |
||
mplsubrgcl.f | |
||
Assertion | mplsubrgcl | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mplsubrgcl.w | |
|
2 | mplsubrgcl.u | |
|
3 | mplsubrgcl.b | |
|
4 | mplsubrgcl.p | |
|
5 | mplsubrgcl.c | |
|
6 | mplsubrgcl.i | |
|
7 | mplsubrgcl.r | |
|
8 | mplsubrgcl.f | |
|
9 | eqid | |
|
10 | 4 2 1 3 6 7 9 | ressmplbas | |
11 | 9 5 | ressbasss | |
12 | 10 11 | eqsstrdi | |
13 | 12 8 | sseldd | |