Description: An element of a polynomial algebra over a subring is an element of the polynomial algebra. (Contributed by SN, 9-Feb-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mplsubrgcl.w | |- W = ( I mPoly U ) |
|
| mplsubrgcl.u | |- U = ( S |`s R ) |
||
| mplsubrgcl.b | |- B = ( Base ` W ) |
||
| mplsubrgcl.p | |- P = ( I mPoly S ) |
||
| mplsubrgcl.c | |- C = ( Base ` P ) |
||
| mplsubrgcl.i | |- ( ph -> I e. V ) |
||
| mplsubrgcl.r | |- ( ph -> R e. ( SubRing ` S ) ) |
||
| mplsubrgcl.f | |- ( ph -> F e. B ) |
||
| Assertion | mplsubrgcl | |- ( ph -> F e. C ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mplsubrgcl.w | |- W = ( I mPoly U ) |
|
| 2 | mplsubrgcl.u | |- U = ( S |`s R ) |
|
| 3 | mplsubrgcl.b | |- B = ( Base ` W ) |
|
| 4 | mplsubrgcl.p | |- P = ( I mPoly S ) |
|
| 5 | mplsubrgcl.c | |- C = ( Base ` P ) |
|
| 6 | mplsubrgcl.i | |- ( ph -> I e. V ) |
|
| 7 | mplsubrgcl.r | |- ( ph -> R e. ( SubRing ` S ) ) |
|
| 8 | mplsubrgcl.f | |- ( ph -> F e. B ) |
|
| 9 | eqid | |- ( P |`s B ) = ( P |`s B ) |
|
| 10 | 4 2 1 3 6 7 9 | ressmplbas | |- ( ph -> B = ( Base ` ( P |`s B ) ) ) |
| 11 | 9 5 | ressbasss | |- ( Base ` ( P |`s B ) ) C_ C |
| 12 | 10 11 | eqsstrdi | |- ( ph -> B C_ C ) |
| 13 | 12 8 | sseldd | |- ( ph -> F e. C ) |