Metamath Proof Explorer


Theorem mplsubrgcl

Description: An element of a polynomial algebra over a subring is an element of the polynomial algebra. (Contributed by SN, 9-Feb-2025)

Ref Expression
Hypotheses mplsubrgcl.w 𝑊 = ( 𝐼 mPoly 𝑈 )
mplsubrgcl.u 𝑈 = ( 𝑆s 𝑅 )
mplsubrgcl.b 𝐵 = ( Base ‘ 𝑊 )
mplsubrgcl.p 𝑃 = ( 𝐼 mPoly 𝑆 )
mplsubrgcl.c 𝐶 = ( Base ‘ 𝑃 )
mplsubrgcl.i ( 𝜑𝐼𝑉 )
mplsubrgcl.r ( 𝜑𝑅 ∈ ( SubRing ‘ 𝑆 ) )
mplsubrgcl.f ( 𝜑𝐹𝐵 )
Assertion mplsubrgcl ( 𝜑𝐹𝐶 )

Proof

Step Hyp Ref Expression
1 mplsubrgcl.w 𝑊 = ( 𝐼 mPoly 𝑈 )
2 mplsubrgcl.u 𝑈 = ( 𝑆s 𝑅 )
3 mplsubrgcl.b 𝐵 = ( Base ‘ 𝑊 )
4 mplsubrgcl.p 𝑃 = ( 𝐼 mPoly 𝑆 )
5 mplsubrgcl.c 𝐶 = ( Base ‘ 𝑃 )
6 mplsubrgcl.i ( 𝜑𝐼𝑉 )
7 mplsubrgcl.r ( 𝜑𝑅 ∈ ( SubRing ‘ 𝑆 ) )
8 mplsubrgcl.f ( 𝜑𝐹𝐵 )
9 eqid ( 𝑃s 𝐵 ) = ( 𝑃s 𝐵 )
10 4 2 1 3 6 7 9 ressmplbas ( 𝜑𝐵 = ( Base ‘ ( 𝑃s 𝐵 ) ) )
11 9 5 ressbasss ( Base ‘ ( 𝑃s 𝐵 ) ) ⊆ 𝐶
12 10 11 eqsstrdi ( 𝜑𝐵𝐶 )
13 12 8 sseldd ( 𝜑𝐹𝐶 )