| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mplsubrgcl.w |
⊢ 𝑊 = ( 𝐼 mPoly 𝑈 ) |
| 2 |
|
mplsubrgcl.u |
⊢ 𝑈 = ( 𝑆 ↾s 𝑅 ) |
| 3 |
|
mplsubrgcl.b |
⊢ 𝐵 = ( Base ‘ 𝑊 ) |
| 4 |
|
mplsubrgcl.p |
⊢ 𝑃 = ( 𝐼 mPoly 𝑆 ) |
| 5 |
|
mplsubrgcl.c |
⊢ 𝐶 = ( Base ‘ 𝑃 ) |
| 6 |
|
mplsubrgcl.i |
⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) |
| 7 |
|
mplsubrgcl.r |
⊢ ( 𝜑 → 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) |
| 8 |
|
mplsubrgcl.f |
⊢ ( 𝜑 → 𝐹 ∈ 𝐵 ) |
| 9 |
|
eqid |
⊢ ( 𝑃 ↾s 𝐵 ) = ( 𝑃 ↾s 𝐵 ) |
| 10 |
4 2 1 3 6 7 9
|
ressmplbas |
⊢ ( 𝜑 → 𝐵 = ( Base ‘ ( 𝑃 ↾s 𝐵 ) ) ) |
| 11 |
9 5
|
ressbasss |
⊢ ( Base ‘ ( 𝑃 ↾s 𝐵 ) ) ⊆ 𝐶 |
| 12 |
10 11
|
eqsstrdi |
⊢ ( 𝜑 → 𝐵 ⊆ 𝐶 ) |
| 13 |
12 8
|
sseldd |
⊢ ( 𝜑 → 𝐹 ∈ 𝐶 ) |