Description: An element of a polynomial algebra over a subring is an element of the polynomial algebra. (Contributed by SN, 9-Feb-2025)
Ref | Expression | ||
---|---|---|---|
Hypotheses | mplsubrgcl.w | ⊢ 𝑊 = ( 𝐼 mPoly 𝑈 ) | |
mplsubrgcl.u | ⊢ 𝑈 = ( 𝑆 ↾s 𝑅 ) | ||
mplsubrgcl.b | ⊢ 𝐵 = ( Base ‘ 𝑊 ) | ||
mplsubrgcl.p | ⊢ 𝑃 = ( 𝐼 mPoly 𝑆 ) | ||
mplsubrgcl.c | ⊢ 𝐶 = ( Base ‘ 𝑃 ) | ||
mplsubrgcl.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) | ||
mplsubrgcl.r | ⊢ ( 𝜑 → 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) | ||
mplsubrgcl.f | ⊢ ( 𝜑 → 𝐹 ∈ 𝐵 ) | ||
Assertion | mplsubrgcl | ⊢ ( 𝜑 → 𝐹 ∈ 𝐶 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mplsubrgcl.w | ⊢ 𝑊 = ( 𝐼 mPoly 𝑈 ) | |
2 | mplsubrgcl.u | ⊢ 𝑈 = ( 𝑆 ↾s 𝑅 ) | |
3 | mplsubrgcl.b | ⊢ 𝐵 = ( Base ‘ 𝑊 ) | |
4 | mplsubrgcl.p | ⊢ 𝑃 = ( 𝐼 mPoly 𝑆 ) | |
5 | mplsubrgcl.c | ⊢ 𝐶 = ( Base ‘ 𝑃 ) | |
6 | mplsubrgcl.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) | |
7 | mplsubrgcl.r | ⊢ ( 𝜑 → 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) | |
8 | mplsubrgcl.f | ⊢ ( 𝜑 → 𝐹 ∈ 𝐵 ) | |
9 | eqid | ⊢ ( 𝑃 ↾s 𝐵 ) = ( 𝑃 ↾s 𝐵 ) | |
10 | 4 2 1 3 6 7 9 | ressmplbas | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ ( 𝑃 ↾s 𝐵 ) ) ) |
11 | 9 5 | ressbasss | ⊢ ( Base ‘ ( 𝑃 ↾s 𝐵 ) ) ⊆ 𝐶 |
12 | 10 11 | eqsstrdi | ⊢ ( 𝜑 → 𝐵 ⊆ 𝐶 ) |
13 | 12 8 | sseldd | ⊢ ( 𝜑 → 𝐹 ∈ 𝐶 ) |