Metamath Proof Explorer


Theorem mplcrngd

Description: The polynomial ring is a commutative ring. (Contributed by SN, 7-Feb-2025)

Ref Expression
Hypotheses mplcrngd.p 𝑃 = ( 𝐼 mPoly 𝑅 )
mplcrngd.i ( 𝜑𝐼𝑉 )
mplcrngd.r ( 𝜑𝑅 ∈ CRing )
Assertion mplcrngd ( 𝜑𝑃 ∈ CRing )

Proof

Step Hyp Ref Expression
1 mplcrngd.p 𝑃 = ( 𝐼 mPoly 𝑅 )
2 mplcrngd.i ( 𝜑𝐼𝑉 )
3 mplcrngd.r ( 𝜑𝑅 ∈ CRing )
4 1 mplcrng ( ( 𝐼𝑉𝑅 ∈ CRing ) → 𝑃 ∈ CRing )
5 2 3 4 syl2anc ( 𝜑𝑃 ∈ CRing )