Metamath Proof Explorer
Description: The polynomial ring is a ring. (Contributed by SN, 7-Feb-2025)
|
|
Ref |
Expression |
|
Hypotheses |
mplringd.p |
⊢ 𝑃 = ( 𝐼 mPoly 𝑅 ) |
|
|
mplringd.i |
⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) |
|
|
mplringd.r |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
|
Assertion |
mplringd |
⊢ ( 𝜑 → 𝑃 ∈ Ring ) |
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mplringd.p |
⊢ 𝑃 = ( 𝐼 mPoly 𝑅 ) |
| 2 |
|
mplringd.i |
⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) |
| 3 |
|
mplringd.r |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
| 4 |
1
|
mplring |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring ) → 𝑃 ∈ Ring ) |
| 5 |
2 3 4
|
syl2anc |
⊢ ( 𝜑 → 𝑃 ∈ Ring ) |