Metamath Proof Explorer


Theorem mplringd

Description: The polynomial ring is a ring. (Contributed by SN, 7-Feb-2025)

Ref Expression
Hypotheses mplringd.p 𝑃 = ( 𝐼 mPoly 𝑅 )
mplringd.i ( 𝜑𝐼𝑉 )
mplringd.r ( 𝜑𝑅 ∈ Ring )
Assertion mplringd ( 𝜑𝑃 ∈ Ring )

Proof

Step Hyp Ref Expression
1 mplringd.p 𝑃 = ( 𝐼 mPoly 𝑅 )
2 mplringd.i ( 𝜑𝐼𝑉 )
3 mplringd.r ( 𝜑𝑅 ∈ Ring )
4 1 mplring ( ( 𝐼𝑉𝑅 ∈ Ring ) → 𝑃 ∈ Ring )
5 2 3 4 syl2anc ( 𝜑𝑃 ∈ Ring )