Metamath Proof Explorer


Theorem mplascl0

Description: The zero scalar as a polynomial. (Contributed by SN, 23-Nov-2024)

Ref Expression
Hypotheses mplascl0.w
|- W = ( I mPoly R )
mplascl0.a
|- A = ( algSc ` W )
mplascl0.o
|- O = ( 0g ` R )
mplascl0.0
|- .0. = ( 0g ` W )
mplascl0.i
|- ( ph -> I e. V )
mplascl0.r
|- ( ph -> R e. Ring )
Assertion mplascl0
|- ( ph -> ( A ` O ) = .0. )

Proof

Step Hyp Ref Expression
1 mplascl0.w
 |-  W = ( I mPoly R )
2 mplascl0.a
 |-  A = ( algSc ` W )
3 mplascl0.o
 |-  O = ( 0g ` R )
4 mplascl0.0
 |-  .0. = ( 0g ` W )
5 mplascl0.i
 |-  ( ph -> I e. V )
6 mplascl0.r
 |-  ( ph -> R e. Ring )
7 1 5 6 mplsca
 |-  ( ph -> R = ( Scalar ` W ) )
8 7 fveq2d
 |-  ( ph -> ( 0g ` R ) = ( 0g ` ( Scalar ` W ) ) )
9 3 8 eqtrid
 |-  ( ph -> O = ( 0g ` ( Scalar ` W ) ) )
10 9 fveq2d
 |-  ( ph -> ( A ` O ) = ( A ` ( 0g ` ( Scalar ` W ) ) ) )
11 eqid
 |-  ( Scalar ` W ) = ( Scalar ` W )
12 1 5 6 mpllmodd
 |-  ( ph -> W e. LMod )
13 1 5 6 mplringd
 |-  ( ph -> W e. Ring )
14 2 11 12 13 ascl0
 |-  ( ph -> ( A ` ( 0g ` ( Scalar ` W ) ) ) = ( 0g ` W ) )
15 10 14 eqtrd
 |-  ( ph -> ( A ` O ) = ( 0g ` W ) )
16 15 4 eqtr4di
 |-  ( ph -> ( A ` O ) = .0. )