Metamath Proof Explorer


Theorem mplascl0

Description: The zero scalar as a polynomial. (Contributed by SN, 23-Nov-2024)

Ref Expression
Hypotheses mplascl0.w W = I mPoly R
mplascl0.a A = algSc W
mplascl0.o O = 0 R
mplascl0.0 0 ˙ = 0 W
mplascl0.i φ I V
mplascl0.r φ R CRing
Assertion mplascl0 φ A O = 0 ˙

Proof

Step Hyp Ref Expression
1 mplascl0.w W = I mPoly R
2 mplascl0.a A = algSc W
3 mplascl0.o O = 0 R
4 mplascl0.0 0 ˙ = 0 W
5 mplascl0.i φ I V
6 mplascl0.r φ R CRing
7 1 5 6 mplsca φ R = Scalar W
8 7 fveq2d φ 0 R = 0 Scalar W
9 3 8 eqtrid φ O = 0 Scalar W
10 9 fveq2d φ algSc W O = algSc W 0 Scalar W
11 eqid algSc W = algSc W
12 eqid Scalar W = Scalar W
13 6 crngringd φ R Ring
14 1 mpllmod I V R Ring W LMod
15 5 13 14 syl2anc φ W LMod
16 1 mplring I V R Ring W Ring
17 5 13 16 syl2anc φ W Ring
18 11 12 15 17 ascl0 φ algSc W 0 Scalar W = 0 W
19 10 18 eqtrd φ algSc W O = 0 W
20 2 fveq1i A O = algSc W O
21 19 20 4 3eqtr4g φ A O = 0 ˙