Metamath Proof Explorer


Theorem mplascl0

Description: The zero scalar as a polynomial. (Contributed by SN, 23-Nov-2024)

Ref Expression
Hypotheses mplascl0.w W=ImPolyR
mplascl0.a A=algScW
mplascl0.o O=0R
mplascl0.0 0˙=0W
mplascl0.i φIV
mplascl0.r φRRing
Assertion mplascl0 φAO=0˙

Proof

Step Hyp Ref Expression
1 mplascl0.w W=ImPolyR
2 mplascl0.a A=algScW
3 mplascl0.o O=0R
4 mplascl0.0 0˙=0W
5 mplascl0.i φIV
6 mplascl0.r φRRing
7 1 5 6 mplsca φR=ScalarW
8 7 fveq2d φ0R=0ScalarW
9 3 8 eqtrid φO=0ScalarW
10 9 fveq2d φAO=A0ScalarW
11 eqid ScalarW=ScalarW
12 1 5 6 mpllmodd φWLMod
13 1 5 6 mplringd φWRing
14 2 11 12 13 ascl0 φA0ScalarW=0W
15 10 14 eqtrd φAO=0W
16 15 4 eqtr4di φAO=0˙