| Step |
Hyp |
Ref |
Expression |
| 1 |
|
evl1varpw.q |
|- Q = ( eval1 ` R ) |
| 2 |
|
evl1varpw.w |
|- W = ( Poly1 ` R ) |
| 3 |
|
evl1varpw.g |
|- G = ( mulGrp ` W ) |
| 4 |
|
evl1varpw.x |
|- X = ( var1 ` R ) |
| 5 |
|
evl1varpw.b |
|- B = ( Base ` R ) |
| 6 |
|
evl1varpw.e |
|- .^ = ( .g ` G ) |
| 7 |
|
evl1varpw.r |
|- ( ph -> R e. CRing ) |
| 8 |
|
evl1varpw.n |
|- ( ph -> N e. NN0 ) |
| 9 |
|
evl1varpwval.c |
|- ( ph -> C e. B ) |
| 10 |
|
evl1varpwval.h |
|- H = ( mulGrp ` R ) |
| 11 |
|
evl1varpwval.e |
|- E = ( .g ` H ) |
| 12 |
|
eqid |
|- ( Base ` W ) = ( Base ` W ) |
| 13 |
1 4 5 2 12 7 9
|
evl1vard |
|- ( ph -> ( X e. ( Base ` W ) /\ ( ( Q ` X ) ` C ) = C ) ) |
| 14 |
3
|
fveq2i |
|- ( .g ` G ) = ( .g ` ( mulGrp ` W ) ) |
| 15 |
6 14
|
eqtri |
|- .^ = ( .g ` ( mulGrp ` W ) ) |
| 16 |
10
|
fveq2i |
|- ( .g ` H ) = ( .g ` ( mulGrp ` R ) ) |
| 17 |
11 16
|
eqtri |
|- E = ( .g ` ( mulGrp ` R ) ) |
| 18 |
1 2 5 12 7 9 13 15 17 8
|
evl1expd |
|- ( ph -> ( ( N .^ X ) e. ( Base ` W ) /\ ( ( Q ` ( N .^ X ) ) ` C ) = ( N E C ) ) ) |
| 19 |
18
|
simprd |
|- ( ph -> ( ( Q ` ( N .^ X ) ) ` C ) = ( N E C ) ) |