Step |
Hyp |
Ref |
Expression |
1 |
|
evl1addd.q |
|- O = ( eval1 ` R ) |
2 |
|
evl1addd.p |
|- P = ( Poly1 ` R ) |
3 |
|
evl1addd.b |
|- B = ( Base ` R ) |
4 |
|
evl1addd.u |
|- U = ( Base ` P ) |
5 |
|
evl1addd.1 |
|- ( ph -> R e. CRing ) |
6 |
|
evl1addd.2 |
|- ( ph -> Y e. B ) |
7 |
|
evl1addd.3 |
|- ( ph -> ( M e. U /\ ( ( O ` M ) ` Y ) = V ) ) |
8 |
|
evl1expd.f |
|- .xb = ( .g ` ( mulGrp ` P ) ) |
9 |
|
evl1expd.e |
|- .^ = ( .g ` ( mulGrp ` R ) ) |
10 |
|
evl1expd.4 |
|- ( ph -> N e. NN0 ) |
11 |
|
eqid |
|- ( mulGrp ` P ) = ( mulGrp ` P ) |
12 |
11 4
|
mgpbas |
|- U = ( Base ` ( mulGrp ` P ) ) |
13 |
|
crngring |
|- ( R e. CRing -> R e. Ring ) |
14 |
5 13
|
syl |
|- ( ph -> R e. Ring ) |
15 |
2
|
ply1ring |
|- ( R e. Ring -> P e. Ring ) |
16 |
11
|
ringmgp |
|- ( P e. Ring -> ( mulGrp ` P ) e. Mnd ) |
17 |
14 15 16
|
3syl |
|- ( ph -> ( mulGrp ` P ) e. Mnd ) |
18 |
7
|
simpld |
|- ( ph -> M e. U ) |
19 |
12 8 17 10 18
|
mulgnn0cld |
|- ( ph -> ( N .xb M ) e. U ) |
20 |
|
eqid |
|- ( R ^s B ) = ( R ^s B ) |
21 |
1 2 20 3
|
evl1rhm |
|- ( R e. CRing -> O e. ( P RingHom ( R ^s B ) ) ) |
22 |
5 21
|
syl |
|- ( ph -> O e. ( P RingHom ( R ^s B ) ) ) |
23 |
|
eqid |
|- ( mulGrp ` ( R ^s B ) ) = ( mulGrp ` ( R ^s B ) ) |
24 |
11 23
|
rhmmhm |
|- ( O e. ( P RingHom ( R ^s B ) ) -> O e. ( ( mulGrp ` P ) MndHom ( mulGrp ` ( R ^s B ) ) ) ) |
25 |
22 24
|
syl |
|- ( ph -> O e. ( ( mulGrp ` P ) MndHom ( mulGrp ` ( R ^s B ) ) ) ) |
26 |
|
eqid |
|- ( .g ` ( mulGrp ` ( R ^s B ) ) ) = ( .g ` ( mulGrp ` ( R ^s B ) ) ) |
27 |
12 8 26
|
mhmmulg |
|- ( ( O e. ( ( mulGrp ` P ) MndHom ( mulGrp ` ( R ^s B ) ) ) /\ N e. NN0 /\ M e. U ) -> ( O ` ( N .xb M ) ) = ( N ( .g ` ( mulGrp ` ( R ^s B ) ) ) ( O ` M ) ) ) |
28 |
25 10 18 27
|
syl3anc |
|- ( ph -> ( O ` ( N .xb M ) ) = ( N ( .g ` ( mulGrp ` ( R ^s B ) ) ) ( O ` M ) ) ) |
29 |
|
eqid |
|- ( .g ` ( ( mulGrp ` R ) ^s B ) ) = ( .g ` ( ( mulGrp ` R ) ^s B ) ) |
30 |
|
eqidd |
|- ( ph -> ( Base ` ( mulGrp ` ( R ^s B ) ) ) = ( Base ` ( mulGrp ` ( R ^s B ) ) ) ) |
31 |
3
|
fvexi |
|- B e. _V |
32 |
|
eqid |
|- ( mulGrp ` R ) = ( mulGrp ` R ) |
33 |
|
eqid |
|- ( ( mulGrp ` R ) ^s B ) = ( ( mulGrp ` R ) ^s B ) |
34 |
|
eqid |
|- ( Base ` ( mulGrp ` ( R ^s B ) ) ) = ( Base ` ( mulGrp ` ( R ^s B ) ) ) |
35 |
|
eqid |
|- ( Base ` ( ( mulGrp ` R ) ^s B ) ) = ( Base ` ( ( mulGrp ` R ) ^s B ) ) |
36 |
|
eqid |
|- ( +g ` ( mulGrp ` ( R ^s B ) ) ) = ( +g ` ( mulGrp ` ( R ^s B ) ) ) |
37 |
|
eqid |
|- ( +g ` ( ( mulGrp ` R ) ^s B ) ) = ( +g ` ( ( mulGrp ` R ) ^s B ) ) |
38 |
20 32 33 23 34 35 36 37
|
pwsmgp |
|- ( ( R e. CRing /\ B e. _V ) -> ( ( Base ` ( mulGrp ` ( R ^s B ) ) ) = ( Base ` ( ( mulGrp ` R ) ^s B ) ) /\ ( +g ` ( mulGrp ` ( R ^s B ) ) ) = ( +g ` ( ( mulGrp ` R ) ^s B ) ) ) ) |
39 |
5 31 38
|
sylancl |
|- ( ph -> ( ( Base ` ( mulGrp ` ( R ^s B ) ) ) = ( Base ` ( ( mulGrp ` R ) ^s B ) ) /\ ( +g ` ( mulGrp ` ( R ^s B ) ) ) = ( +g ` ( ( mulGrp ` R ) ^s B ) ) ) ) |
40 |
39
|
simpld |
|- ( ph -> ( Base ` ( mulGrp ` ( R ^s B ) ) ) = ( Base ` ( ( mulGrp ` R ) ^s B ) ) ) |
41 |
|
ssv |
|- ( Base ` ( mulGrp ` ( R ^s B ) ) ) C_ _V |
42 |
41
|
a1i |
|- ( ph -> ( Base ` ( mulGrp ` ( R ^s B ) ) ) C_ _V ) |
43 |
|
ovexd |
|- ( ( ph /\ ( x e. _V /\ y e. _V ) ) -> ( x ( +g ` ( mulGrp ` ( R ^s B ) ) ) y ) e. _V ) |
44 |
39
|
simprd |
|- ( ph -> ( +g ` ( mulGrp ` ( R ^s B ) ) ) = ( +g ` ( ( mulGrp ` R ) ^s B ) ) ) |
45 |
44
|
oveqdr |
|- ( ( ph /\ ( x e. _V /\ y e. _V ) ) -> ( x ( +g ` ( mulGrp ` ( R ^s B ) ) ) y ) = ( x ( +g ` ( ( mulGrp ` R ) ^s B ) ) y ) ) |
46 |
26 29 30 40 42 43 45
|
mulgpropd |
|- ( ph -> ( .g ` ( mulGrp ` ( R ^s B ) ) ) = ( .g ` ( ( mulGrp ` R ) ^s B ) ) ) |
47 |
46
|
oveqd |
|- ( ph -> ( N ( .g ` ( mulGrp ` ( R ^s B ) ) ) ( O ` M ) ) = ( N ( .g ` ( ( mulGrp ` R ) ^s B ) ) ( O ` M ) ) ) |
48 |
28 47
|
eqtrd |
|- ( ph -> ( O ` ( N .xb M ) ) = ( N ( .g ` ( ( mulGrp ` R ) ^s B ) ) ( O ` M ) ) ) |
49 |
48
|
fveq1d |
|- ( ph -> ( ( O ` ( N .xb M ) ) ` Y ) = ( ( N ( .g ` ( ( mulGrp ` R ) ^s B ) ) ( O ` M ) ) ` Y ) ) |
50 |
32
|
ringmgp |
|- ( R e. Ring -> ( mulGrp ` R ) e. Mnd ) |
51 |
14 50
|
syl |
|- ( ph -> ( mulGrp ` R ) e. Mnd ) |
52 |
31
|
a1i |
|- ( ph -> B e. _V ) |
53 |
|
eqid |
|- ( Base ` ( R ^s B ) ) = ( Base ` ( R ^s B ) ) |
54 |
4 53
|
rhmf |
|- ( O e. ( P RingHom ( R ^s B ) ) -> O : U --> ( Base ` ( R ^s B ) ) ) |
55 |
22 54
|
syl |
|- ( ph -> O : U --> ( Base ` ( R ^s B ) ) ) |
56 |
55 18
|
ffvelcdmd |
|- ( ph -> ( O ` M ) e. ( Base ` ( R ^s B ) ) ) |
57 |
23 53
|
mgpbas |
|- ( Base ` ( R ^s B ) ) = ( Base ` ( mulGrp ` ( R ^s B ) ) ) |
58 |
57 40
|
eqtrid |
|- ( ph -> ( Base ` ( R ^s B ) ) = ( Base ` ( ( mulGrp ` R ) ^s B ) ) ) |
59 |
56 58
|
eleqtrd |
|- ( ph -> ( O ` M ) e. ( Base ` ( ( mulGrp ` R ) ^s B ) ) ) |
60 |
33 35 29 9
|
pwsmulg |
|- ( ( ( ( mulGrp ` R ) e. Mnd /\ B e. _V ) /\ ( N e. NN0 /\ ( O ` M ) e. ( Base ` ( ( mulGrp ` R ) ^s B ) ) /\ Y e. B ) ) -> ( ( N ( .g ` ( ( mulGrp ` R ) ^s B ) ) ( O ` M ) ) ` Y ) = ( N .^ ( ( O ` M ) ` Y ) ) ) |
61 |
51 52 10 59 6 60
|
syl23anc |
|- ( ph -> ( ( N ( .g ` ( ( mulGrp ` R ) ^s B ) ) ( O ` M ) ) ` Y ) = ( N .^ ( ( O ` M ) ` Y ) ) ) |
62 |
7
|
simprd |
|- ( ph -> ( ( O ` M ) ` Y ) = V ) |
63 |
62
|
oveq2d |
|- ( ph -> ( N .^ ( ( O ` M ) ` Y ) ) = ( N .^ V ) ) |
64 |
61 63
|
eqtrd |
|- ( ph -> ( ( N ( .g ` ( ( mulGrp ` R ) ^s B ) ) ( O ` M ) ) ` Y ) = ( N .^ V ) ) |
65 |
49 64
|
eqtrd |
|- ( ph -> ( ( O ` ( N .xb M ) ) ` Y ) = ( N .^ V ) ) |
66 |
19 65
|
jca |
|- ( ph -> ( ( N .xb M ) e. U /\ ( ( O ` ( N .xb M ) ) ` Y ) = ( N .^ V ) ) ) |