| Step |
Hyp |
Ref |
Expression |
| 1 |
|
evl1addd.q |
|- O = ( eval1 ` R ) |
| 2 |
|
evl1addd.p |
|- P = ( Poly1 ` R ) |
| 3 |
|
evl1addd.b |
|- B = ( Base ` R ) |
| 4 |
|
evl1addd.u |
|- U = ( Base ` P ) |
| 5 |
|
evl1addd.1 |
|- ( ph -> R e. CRing ) |
| 6 |
|
evl1addd.2 |
|- ( ph -> Y e. B ) |
| 7 |
|
evl1addd.3 |
|- ( ph -> ( M e. U /\ ( ( O ` M ) ` Y ) = V ) ) |
| 8 |
|
evl1expd.f |
|- .xb = ( .g ` ( mulGrp ` P ) ) |
| 9 |
|
evl1expd.e |
|- .^ = ( .g ` ( mulGrp ` R ) ) |
| 10 |
|
evl1expd.4 |
|- ( ph -> N e. NN0 ) |
| 11 |
|
eqid |
|- ( mulGrp ` P ) = ( mulGrp ` P ) |
| 12 |
11 4
|
mgpbas |
|- U = ( Base ` ( mulGrp ` P ) ) |
| 13 |
|
crngring |
|- ( R e. CRing -> R e. Ring ) |
| 14 |
5 13
|
syl |
|- ( ph -> R e. Ring ) |
| 15 |
2
|
ply1ring |
|- ( R e. Ring -> P e. Ring ) |
| 16 |
11
|
ringmgp |
|- ( P e. Ring -> ( mulGrp ` P ) e. Mnd ) |
| 17 |
14 15 16
|
3syl |
|- ( ph -> ( mulGrp ` P ) e. Mnd ) |
| 18 |
7
|
simpld |
|- ( ph -> M e. U ) |
| 19 |
12 8 17 10 18
|
mulgnn0cld |
|- ( ph -> ( N .xb M ) e. U ) |
| 20 |
|
eqid |
|- ( R ^s B ) = ( R ^s B ) |
| 21 |
1 2 20 3
|
evl1rhm |
|- ( R e. CRing -> O e. ( P RingHom ( R ^s B ) ) ) |
| 22 |
5 21
|
syl |
|- ( ph -> O e. ( P RingHom ( R ^s B ) ) ) |
| 23 |
|
eqid |
|- ( mulGrp ` ( R ^s B ) ) = ( mulGrp ` ( R ^s B ) ) |
| 24 |
11 23
|
rhmmhm |
|- ( O e. ( P RingHom ( R ^s B ) ) -> O e. ( ( mulGrp ` P ) MndHom ( mulGrp ` ( R ^s B ) ) ) ) |
| 25 |
22 24
|
syl |
|- ( ph -> O e. ( ( mulGrp ` P ) MndHom ( mulGrp ` ( R ^s B ) ) ) ) |
| 26 |
|
eqid |
|- ( .g ` ( mulGrp ` ( R ^s B ) ) ) = ( .g ` ( mulGrp ` ( R ^s B ) ) ) |
| 27 |
12 8 26
|
mhmmulg |
|- ( ( O e. ( ( mulGrp ` P ) MndHom ( mulGrp ` ( R ^s B ) ) ) /\ N e. NN0 /\ M e. U ) -> ( O ` ( N .xb M ) ) = ( N ( .g ` ( mulGrp ` ( R ^s B ) ) ) ( O ` M ) ) ) |
| 28 |
25 10 18 27
|
syl3anc |
|- ( ph -> ( O ` ( N .xb M ) ) = ( N ( .g ` ( mulGrp ` ( R ^s B ) ) ) ( O ` M ) ) ) |
| 29 |
|
eqid |
|- ( .g ` ( ( mulGrp ` R ) ^s B ) ) = ( .g ` ( ( mulGrp ` R ) ^s B ) ) |
| 30 |
|
eqidd |
|- ( ph -> ( Base ` ( mulGrp ` ( R ^s B ) ) ) = ( Base ` ( mulGrp ` ( R ^s B ) ) ) ) |
| 31 |
3
|
fvexi |
|- B e. _V |
| 32 |
|
eqid |
|- ( mulGrp ` R ) = ( mulGrp ` R ) |
| 33 |
|
eqid |
|- ( ( mulGrp ` R ) ^s B ) = ( ( mulGrp ` R ) ^s B ) |
| 34 |
|
eqid |
|- ( Base ` ( mulGrp ` ( R ^s B ) ) ) = ( Base ` ( mulGrp ` ( R ^s B ) ) ) |
| 35 |
|
eqid |
|- ( Base ` ( ( mulGrp ` R ) ^s B ) ) = ( Base ` ( ( mulGrp ` R ) ^s B ) ) |
| 36 |
|
eqid |
|- ( +g ` ( mulGrp ` ( R ^s B ) ) ) = ( +g ` ( mulGrp ` ( R ^s B ) ) ) |
| 37 |
|
eqid |
|- ( +g ` ( ( mulGrp ` R ) ^s B ) ) = ( +g ` ( ( mulGrp ` R ) ^s B ) ) |
| 38 |
20 32 33 23 34 35 36 37
|
pwsmgp |
|- ( ( R e. CRing /\ B e. _V ) -> ( ( Base ` ( mulGrp ` ( R ^s B ) ) ) = ( Base ` ( ( mulGrp ` R ) ^s B ) ) /\ ( +g ` ( mulGrp ` ( R ^s B ) ) ) = ( +g ` ( ( mulGrp ` R ) ^s B ) ) ) ) |
| 39 |
5 31 38
|
sylancl |
|- ( ph -> ( ( Base ` ( mulGrp ` ( R ^s B ) ) ) = ( Base ` ( ( mulGrp ` R ) ^s B ) ) /\ ( +g ` ( mulGrp ` ( R ^s B ) ) ) = ( +g ` ( ( mulGrp ` R ) ^s B ) ) ) ) |
| 40 |
39
|
simpld |
|- ( ph -> ( Base ` ( mulGrp ` ( R ^s B ) ) ) = ( Base ` ( ( mulGrp ` R ) ^s B ) ) ) |
| 41 |
|
ssv |
|- ( Base ` ( mulGrp ` ( R ^s B ) ) ) C_ _V |
| 42 |
41
|
a1i |
|- ( ph -> ( Base ` ( mulGrp ` ( R ^s B ) ) ) C_ _V ) |
| 43 |
|
ovexd |
|- ( ( ph /\ ( x e. _V /\ y e. _V ) ) -> ( x ( +g ` ( mulGrp ` ( R ^s B ) ) ) y ) e. _V ) |
| 44 |
39
|
simprd |
|- ( ph -> ( +g ` ( mulGrp ` ( R ^s B ) ) ) = ( +g ` ( ( mulGrp ` R ) ^s B ) ) ) |
| 45 |
44
|
oveqdr |
|- ( ( ph /\ ( x e. _V /\ y e. _V ) ) -> ( x ( +g ` ( mulGrp ` ( R ^s B ) ) ) y ) = ( x ( +g ` ( ( mulGrp ` R ) ^s B ) ) y ) ) |
| 46 |
26 29 30 40 42 43 45
|
mulgpropd |
|- ( ph -> ( .g ` ( mulGrp ` ( R ^s B ) ) ) = ( .g ` ( ( mulGrp ` R ) ^s B ) ) ) |
| 47 |
46
|
oveqd |
|- ( ph -> ( N ( .g ` ( mulGrp ` ( R ^s B ) ) ) ( O ` M ) ) = ( N ( .g ` ( ( mulGrp ` R ) ^s B ) ) ( O ` M ) ) ) |
| 48 |
28 47
|
eqtrd |
|- ( ph -> ( O ` ( N .xb M ) ) = ( N ( .g ` ( ( mulGrp ` R ) ^s B ) ) ( O ` M ) ) ) |
| 49 |
48
|
fveq1d |
|- ( ph -> ( ( O ` ( N .xb M ) ) ` Y ) = ( ( N ( .g ` ( ( mulGrp ` R ) ^s B ) ) ( O ` M ) ) ` Y ) ) |
| 50 |
32
|
ringmgp |
|- ( R e. Ring -> ( mulGrp ` R ) e. Mnd ) |
| 51 |
14 50
|
syl |
|- ( ph -> ( mulGrp ` R ) e. Mnd ) |
| 52 |
31
|
a1i |
|- ( ph -> B e. _V ) |
| 53 |
|
eqid |
|- ( Base ` ( R ^s B ) ) = ( Base ` ( R ^s B ) ) |
| 54 |
4 53
|
rhmf |
|- ( O e. ( P RingHom ( R ^s B ) ) -> O : U --> ( Base ` ( R ^s B ) ) ) |
| 55 |
22 54
|
syl |
|- ( ph -> O : U --> ( Base ` ( R ^s B ) ) ) |
| 56 |
55 18
|
ffvelcdmd |
|- ( ph -> ( O ` M ) e. ( Base ` ( R ^s B ) ) ) |
| 57 |
23 53
|
mgpbas |
|- ( Base ` ( R ^s B ) ) = ( Base ` ( mulGrp ` ( R ^s B ) ) ) |
| 58 |
57 40
|
eqtrid |
|- ( ph -> ( Base ` ( R ^s B ) ) = ( Base ` ( ( mulGrp ` R ) ^s B ) ) ) |
| 59 |
56 58
|
eleqtrd |
|- ( ph -> ( O ` M ) e. ( Base ` ( ( mulGrp ` R ) ^s B ) ) ) |
| 60 |
33 35 29 9
|
pwsmulg |
|- ( ( ( ( mulGrp ` R ) e. Mnd /\ B e. _V ) /\ ( N e. NN0 /\ ( O ` M ) e. ( Base ` ( ( mulGrp ` R ) ^s B ) ) /\ Y e. B ) ) -> ( ( N ( .g ` ( ( mulGrp ` R ) ^s B ) ) ( O ` M ) ) ` Y ) = ( N .^ ( ( O ` M ) ` Y ) ) ) |
| 61 |
51 52 10 59 6 60
|
syl23anc |
|- ( ph -> ( ( N ( .g ` ( ( mulGrp ` R ) ^s B ) ) ( O ` M ) ) ` Y ) = ( N .^ ( ( O ` M ) ` Y ) ) ) |
| 62 |
7
|
simprd |
|- ( ph -> ( ( O ` M ) ` Y ) = V ) |
| 63 |
62
|
oveq2d |
|- ( ph -> ( N .^ ( ( O ` M ) ` Y ) ) = ( N .^ V ) ) |
| 64 |
61 63
|
eqtrd |
|- ( ph -> ( ( N ( .g ` ( ( mulGrp ` R ) ^s B ) ) ( O ` M ) ) ` Y ) = ( N .^ V ) ) |
| 65 |
49 64
|
eqtrd |
|- ( ph -> ( ( O ` ( N .xb M ) ) ` Y ) = ( N .^ V ) ) |
| 66 |
19 65
|
jca |
|- ( ph -> ( ( N .xb M ) e. U /\ ( ( O ` ( N .xb M ) ) ` Y ) = ( N .^ V ) ) ) |