Metamath Proof Explorer


Theorem evl1expd

Description: Polynomial evaluation builder for an exponential. (Contributed by Mario Carneiro, 12-Jun-2015)

Ref Expression
Hypotheses evl1addd.q
|- O = ( eval1 ` R )
evl1addd.p
|- P = ( Poly1 ` R )
evl1addd.b
|- B = ( Base ` R )
evl1addd.u
|- U = ( Base ` P )
evl1addd.1
|- ( ph -> R e. CRing )
evl1addd.2
|- ( ph -> Y e. B )
evl1addd.3
|- ( ph -> ( M e. U /\ ( ( O ` M ) ` Y ) = V ) )
evl1expd.f
|- .xb = ( .g ` ( mulGrp ` P ) )
evl1expd.e
|- .^ = ( .g ` ( mulGrp ` R ) )
evl1expd.4
|- ( ph -> N e. NN0 )
Assertion evl1expd
|- ( ph -> ( ( N .xb M ) e. U /\ ( ( O ` ( N .xb M ) ) ` Y ) = ( N .^ V ) ) )

Proof

Step Hyp Ref Expression
1 evl1addd.q
 |-  O = ( eval1 ` R )
2 evl1addd.p
 |-  P = ( Poly1 ` R )
3 evl1addd.b
 |-  B = ( Base ` R )
4 evl1addd.u
 |-  U = ( Base ` P )
5 evl1addd.1
 |-  ( ph -> R e. CRing )
6 evl1addd.2
 |-  ( ph -> Y e. B )
7 evl1addd.3
 |-  ( ph -> ( M e. U /\ ( ( O ` M ) ` Y ) = V ) )
8 evl1expd.f
 |-  .xb = ( .g ` ( mulGrp ` P ) )
9 evl1expd.e
 |-  .^ = ( .g ` ( mulGrp ` R ) )
10 evl1expd.4
 |-  ( ph -> N e. NN0 )
11 eqid
 |-  ( mulGrp ` P ) = ( mulGrp ` P )
12 11 4 mgpbas
 |-  U = ( Base ` ( mulGrp ` P ) )
13 crngring
 |-  ( R e. CRing -> R e. Ring )
14 5 13 syl
 |-  ( ph -> R e. Ring )
15 2 ply1ring
 |-  ( R e. Ring -> P e. Ring )
16 11 ringmgp
 |-  ( P e. Ring -> ( mulGrp ` P ) e. Mnd )
17 14 15 16 3syl
 |-  ( ph -> ( mulGrp ` P ) e. Mnd )
18 7 simpld
 |-  ( ph -> M e. U )
19 12 8 17 10 18 mulgnn0cld
 |-  ( ph -> ( N .xb M ) e. U )
20 eqid
 |-  ( R ^s B ) = ( R ^s B )
21 1 2 20 3 evl1rhm
 |-  ( R e. CRing -> O e. ( P RingHom ( R ^s B ) ) )
22 5 21 syl
 |-  ( ph -> O e. ( P RingHom ( R ^s B ) ) )
23 eqid
 |-  ( mulGrp ` ( R ^s B ) ) = ( mulGrp ` ( R ^s B ) )
24 11 23 rhmmhm
 |-  ( O e. ( P RingHom ( R ^s B ) ) -> O e. ( ( mulGrp ` P ) MndHom ( mulGrp ` ( R ^s B ) ) ) )
25 22 24 syl
 |-  ( ph -> O e. ( ( mulGrp ` P ) MndHom ( mulGrp ` ( R ^s B ) ) ) )
26 eqid
 |-  ( .g ` ( mulGrp ` ( R ^s B ) ) ) = ( .g ` ( mulGrp ` ( R ^s B ) ) )
27 12 8 26 mhmmulg
 |-  ( ( O e. ( ( mulGrp ` P ) MndHom ( mulGrp ` ( R ^s B ) ) ) /\ N e. NN0 /\ M e. U ) -> ( O ` ( N .xb M ) ) = ( N ( .g ` ( mulGrp ` ( R ^s B ) ) ) ( O ` M ) ) )
28 25 10 18 27 syl3anc
 |-  ( ph -> ( O ` ( N .xb M ) ) = ( N ( .g ` ( mulGrp ` ( R ^s B ) ) ) ( O ` M ) ) )
29 eqid
 |-  ( .g ` ( ( mulGrp ` R ) ^s B ) ) = ( .g ` ( ( mulGrp ` R ) ^s B ) )
30 eqidd
 |-  ( ph -> ( Base ` ( mulGrp ` ( R ^s B ) ) ) = ( Base ` ( mulGrp ` ( R ^s B ) ) ) )
31 3 fvexi
 |-  B e. _V
32 eqid
 |-  ( mulGrp ` R ) = ( mulGrp ` R )
33 eqid
 |-  ( ( mulGrp ` R ) ^s B ) = ( ( mulGrp ` R ) ^s B )
34 eqid
 |-  ( Base ` ( mulGrp ` ( R ^s B ) ) ) = ( Base ` ( mulGrp ` ( R ^s B ) ) )
35 eqid
 |-  ( Base ` ( ( mulGrp ` R ) ^s B ) ) = ( Base ` ( ( mulGrp ` R ) ^s B ) )
36 eqid
 |-  ( +g ` ( mulGrp ` ( R ^s B ) ) ) = ( +g ` ( mulGrp ` ( R ^s B ) ) )
37 eqid
 |-  ( +g ` ( ( mulGrp ` R ) ^s B ) ) = ( +g ` ( ( mulGrp ` R ) ^s B ) )
38 20 32 33 23 34 35 36 37 pwsmgp
 |-  ( ( R e. CRing /\ B e. _V ) -> ( ( Base ` ( mulGrp ` ( R ^s B ) ) ) = ( Base ` ( ( mulGrp ` R ) ^s B ) ) /\ ( +g ` ( mulGrp ` ( R ^s B ) ) ) = ( +g ` ( ( mulGrp ` R ) ^s B ) ) ) )
39 5 31 38 sylancl
 |-  ( ph -> ( ( Base ` ( mulGrp ` ( R ^s B ) ) ) = ( Base ` ( ( mulGrp ` R ) ^s B ) ) /\ ( +g ` ( mulGrp ` ( R ^s B ) ) ) = ( +g ` ( ( mulGrp ` R ) ^s B ) ) ) )
40 39 simpld
 |-  ( ph -> ( Base ` ( mulGrp ` ( R ^s B ) ) ) = ( Base ` ( ( mulGrp ` R ) ^s B ) ) )
41 ssv
 |-  ( Base ` ( mulGrp ` ( R ^s B ) ) ) C_ _V
42 41 a1i
 |-  ( ph -> ( Base ` ( mulGrp ` ( R ^s B ) ) ) C_ _V )
43 ovexd
 |-  ( ( ph /\ ( x e. _V /\ y e. _V ) ) -> ( x ( +g ` ( mulGrp ` ( R ^s B ) ) ) y ) e. _V )
44 39 simprd
 |-  ( ph -> ( +g ` ( mulGrp ` ( R ^s B ) ) ) = ( +g ` ( ( mulGrp ` R ) ^s B ) ) )
45 44 oveqdr
 |-  ( ( ph /\ ( x e. _V /\ y e. _V ) ) -> ( x ( +g ` ( mulGrp ` ( R ^s B ) ) ) y ) = ( x ( +g ` ( ( mulGrp ` R ) ^s B ) ) y ) )
46 26 29 30 40 42 43 45 mulgpropd
 |-  ( ph -> ( .g ` ( mulGrp ` ( R ^s B ) ) ) = ( .g ` ( ( mulGrp ` R ) ^s B ) ) )
47 46 oveqd
 |-  ( ph -> ( N ( .g ` ( mulGrp ` ( R ^s B ) ) ) ( O ` M ) ) = ( N ( .g ` ( ( mulGrp ` R ) ^s B ) ) ( O ` M ) ) )
48 28 47 eqtrd
 |-  ( ph -> ( O ` ( N .xb M ) ) = ( N ( .g ` ( ( mulGrp ` R ) ^s B ) ) ( O ` M ) ) )
49 48 fveq1d
 |-  ( ph -> ( ( O ` ( N .xb M ) ) ` Y ) = ( ( N ( .g ` ( ( mulGrp ` R ) ^s B ) ) ( O ` M ) ) ` Y ) )
50 32 ringmgp
 |-  ( R e. Ring -> ( mulGrp ` R ) e. Mnd )
51 14 50 syl
 |-  ( ph -> ( mulGrp ` R ) e. Mnd )
52 31 a1i
 |-  ( ph -> B e. _V )
53 eqid
 |-  ( Base ` ( R ^s B ) ) = ( Base ` ( R ^s B ) )
54 4 53 rhmf
 |-  ( O e. ( P RingHom ( R ^s B ) ) -> O : U --> ( Base ` ( R ^s B ) ) )
55 22 54 syl
 |-  ( ph -> O : U --> ( Base ` ( R ^s B ) ) )
56 55 18 ffvelcdmd
 |-  ( ph -> ( O ` M ) e. ( Base ` ( R ^s B ) ) )
57 23 53 mgpbas
 |-  ( Base ` ( R ^s B ) ) = ( Base ` ( mulGrp ` ( R ^s B ) ) )
58 57 40 eqtrid
 |-  ( ph -> ( Base ` ( R ^s B ) ) = ( Base ` ( ( mulGrp ` R ) ^s B ) ) )
59 56 58 eleqtrd
 |-  ( ph -> ( O ` M ) e. ( Base ` ( ( mulGrp ` R ) ^s B ) ) )
60 33 35 29 9 pwsmulg
 |-  ( ( ( ( mulGrp ` R ) e. Mnd /\ B e. _V ) /\ ( N e. NN0 /\ ( O ` M ) e. ( Base ` ( ( mulGrp ` R ) ^s B ) ) /\ Y e. B ) ) -> ( ( N ( .g ` ( ( mulGrp ` R ) ^s B ) ) ( O ` M ) ) ` Y ) = ( N .^ ( ( O ` M ) ` Y ) ) )
61 51 52 10 59 6 60 syl23anc
 |-  ( ph -> ( ( N ( .g ` ( ( mulGrp ` R ) ^s B ) ) ( O ` M ) ) ` Y ) = ( N .^ ( ( O ` M ) ` Y ) ) )
62 7 simprd
 |-  ( ph -> ( ( O ` M ) ` Y ) = V )
63 62 oveq2d
 |-  ( ph -> ( N .^ ( ( O ` M ) ` Y ) ) = ( N .^ V ) )
64 61 63 eqtrd
 |-  ( ph -> ( ( N ( .g ` ( ( mulGrp ` R ) ^s B ) ) ( O ` M ) ) ` Y ) = ( N .^ V ) )
65 49 64 eqtrd
 |-  ( ph -> ( ( O ` ( N .xb M ) ) ` Y ) = ( N .^ V ) )
66 19 65 jca
 |-  ( ph -> ( ( N .xb M ) e. U /\ ( ( O ` ( N .xb M ) ) ` Y ) = ( N .^ V ) ) )