| Step |
Hyp |
Ref |
Expression |
| 1 |
|
evl1var.q |
|- O = ( eval1 ` R ) |
| 2 |
|
evl1var.v |
|- X = ( var1 ` R ) |
| 3 |
|
evl1var.b |
|- B = ( Base ` R ) |
| 4 |
|
evl1vard.p |
|- P = ( Poly1 ` R ) |
| 5 |
|
evl1vard.u |
|- U = ( Base ` P ) |
| 6 |
|
evl1vard.1 |
|- ( ph -> R e. CRing ) |
| 7 |
|
evl1vard.2 |
|- ( ph -> Y e. B ) |
| 8 |
|
crngring |
|- ( R e. CRing -> R e. Ring ) |
| 9 |
2 4 5
|
vr1cl |
|- ( R e. Ring -> X e. U ) |
| 10 |
6 8 9
|
3syl |
|- ( ph -> X e. U ) |
| 11 |
1 2 3
|
evl1var |
|- ( R e. CRing -> ( O ` X ) = ( _I |` B ) ) |
| 12 |
6 11
|
syl |
|- ( ph -> ( O ` X ) = ( _I |` B ) ) |
| 13 |
12
|
fveq1d |
|- ( ph -> ( ( O ` X ) ` Y ) = ( ( _I |` B ) ` Y ) ) |
| 14 |
|
fvresi |
|- ( Y e. B -> ( ( _I |` B ) ` Y ) = Y ) |
| 15 |
7 14
|
syl |
|- ( ph -> ( ( _I |` B ) ` Y ) = Y ) |
| 16 |
13 15
|
eqtrd |
|- ( ph -> ( ( O ` X ) ` Y ) = Y ) |
| 17 |
10 16
|
jca |
|- ( ph -> ( X e. U /\ ( ( O ` X ) ` Y ) = Y ) ) |