| Step |
Hyp |
Ref |
Expression |
| 1 |
|
evl1var.q |
|- O = ( eval1 ` R ) |
| 2 |
|
evl1var.v |
|- X = ( var1 ` R ) |
| 3 |
|
evl1var.b |
|- B = ( Base ` R ) |
| 4 |
|
crngring |
|- ( R e. CRing -> R e. Ring ) |
| 5 |
|
eqid |
|- ( Poly1 ` R ) = ( Poly1 ` R ) |
| 6 |
|
eqid |
|- ( Base ` ( Poly1 ` R ) ) = ( Base ` ( Poly1 ` R ) ) |
| 7 |
2 5 6
|
vr1cl |
|- ( R e. Ring -> X e. ( Base ` ( Poly1 ` R ) ) ) |
| 8 |
4 7
|
syl |
|- ( R e. CRing -> X e. ( Base ` ( Poly1 ` R ) ) ) |
| 9 |
|
eqid |
|- ( 1o eval R ) = ( 1o eval R ) |
| 10 |
|
eqid |
|- ( 1o mPoly R ) = ( 1o mPoly R ) |
| 11 |
5 6
|
ply1bas |
|- ( Base ` ( Poly1 ` R ) ) = ( Base ` ( 1o mPoly R ) ) |
| 12 |
1 9 3 10 11
|
evl1val |
|- ( ( R e. CRing /\ X e. ( Base ` ( Poly1 ` R ) ) ) -> ( O ` X ) = ( ( ( 1o eval R ) ` X ) o. ( y e. B |-> ( 1o X. { y } ) ) ) ) |
| 13 |
8 12
|
mpdan |
|- ( R e. CRing -> ( O ` X ) = ( ( ( 1o eval R ) ` X ) o. ( y e. B |-> ( 1o X. { y } ) ) ) ) |
| 14 |
|
df1o2 |
|- 1o = { (/) } |
| 15 |
3
|
fvexi |
|- B e. _V |
| 16 |
|
0ex |
|- (/) e. _V |
| 17 |
|
eqid |
|- ( z e. ( B ^m 1o ) |-> ( z ` (/) ) ) = ( z e. ( B ^m 1o ) |-> ( z ` (/) ) ) |
| 18 |
14 15 16 17
|
mapsncnv |
|- `' ( z e. ( B ^m 1o ) |-> ( z ` (/) ) ) = ( y e. B |-> ( 1o X. { y } ) ) |
| 19 |
18
|
coeq2i |
|- ( ( ( 1o eval R ) ` X ) o. `' ( z e. ( B ^m 1o ) |-> ( z ` (/) ) ) ) = ( ( ( 1o eval R ) ` X ) o. ( y e. B |-> ( 1o X. { y } ) ) ) |
| 20 |
3
|
ressid |
|- ( R e. CRing -> ( R |`s B ) = R ) |
| 21 |
20
|
oveq2d |
|- ( R e. CRing -> ( 1o mVar ( R |`s B ) ) = ( 1o mVar R ) ) |
| 22 |
21
|
fveq1d |
|- ( R e. CRing -> ( ( 1o mVar ( R |`s B ) ) ` (/) ) = ( ( 1o mVar R ) ` (/) ) ) |
| 23 |
2
|
vr1val |
|- X = ( ( 1o mVar R ) ` (/) ) |
| 24 |
22 23
|
eqtr4di |
|- ( R e. CRing -> ( ( 1o mVar ( R |`s B ) ) ` (/) ) = X ) |
| 25 |
24
|
fveq2d |
|- ( R e. CRing -> ( ( 1o eval R ) ` ( ( 1o mVar ( R |`s B ) ) ` (/) ) ) = ( ( 1o eval R ) ` X ) ) |
| 26 |
9 3
|
evlval |
|- ( 1o eval R ) = ( ( 1o evalSub R ) ` B ) |
| 27 |
|
eqid |
|- ( 1o mVar ( R |`s B ) ) = ( 1o mVar ( R |`s B ) ) |
| 28 |
|
eqid |
|- ( R |`s B ) = ( R |`s B ) |
| 29 |
|
1on |
|- 1o e. On |
| 30 |
29
|
a1i |
|- ( R e. CRing -> 1o e. On ) |
| 31 |
|
id |
|- ( R e. CRing -> R e. CRing ) |
| 32 |
3
|
subrgid |
|- ( R e. Ring -> B e. ( SubRing ` R ) ) |
| 33 |
4 32
|
syl |
|- ( R e. CRing -> B e. ( SubRing ` R ) ) |
| 34 |
|
0lt1o |
|- (/) e. 1o |
| 35 |
34
|
a1i |
|- ( R e. CRing -> (/) e. 1o ) |
| 36 |
26 27 28 3 30 31 33 35
|
evlsvar |
|- ( R e. CRing -> ( ( 1o eval R ) ` ( ( 1o mVar ( R |`s B ) ) ` (/) ) ) = ( z e. ( B ^m 1o ) |-> ( z ` (/) ) ) ) |
| 37 |
25 36
|
eqtr3d |
|- ( R e. CRing -> ( ( 1o eval R ) ` X ) = ( z e. ( B ^m 1o ) |-> ( z ` (/) ) ) ) |
| 38 |
37
|
coeq1d |
|- ( R e. CRing -> ( ( ( 1o eval R ) ` X ) o. `' ( z e. ( B ^m 1o ) |-> ( z ` (/) ) ) ) = ( ( z e. ( B ^m 1o ) |-> ( z ` (/) ) ) o. `' ( z e. ( B ^m 1o ) |-> ( z ` (/) ) ) ) ) |
| 39 |
19 38
|
eqtr3id |
|- ( R e. CRing -> ( ( ( 1o eval R ) ` X ) o. ( y e. B |-> ( 1o X. { y } ) ) ) = ( ( z e. ( B ^m 1o ) |-> ( z ` (/) ) ) o. `' ( z e. ( B ^m 1o ) |-> ( z ` (/) ) ) ) ) |
| 40 |
14 15 16 17
|
mapsnf1o2 |
|- ( z e. ( B ^m 1o ) |-> ( z ` (/) ) ) : ( B ^m 1o ) -1-1-onto-> B |
| 41 |
|
f1ococnv2 |
|- ( ( z e. ( B ^m 1o ) |-> ( z ` (/) ) ) : ( B ^m 1o ) -1-1-onto-> B -> ( ( z e. ( B ^m 1o ) |-> ( z ` (/) ) ) o. `' ( z e. ( B ^m 1o ) |-> ( z ` (/) ) ) ) = ( _I |` B ) ) |
| 42 |
40 41
|
mp1i |
|- ( R e. CRing -> ( ( z e. ( B ^m 1o ) |-> ( z ` (/) ) ) o. `' ( z e. ( B ^m 1o ) |-> ( z ` (/) ) ) ) = ( _I |` B ) ) |
| 43 |
13 39 42
|
3eqtrd |
|- ( R e. CRing -> ( O ` X ) = ( _I |` B ) ) |