| Step |
Hyp |
Ref |
Expression |
| 1 |
|
evl1var.q |
⊢ 𝑂 = ( eval1 ‘ 𝑅 ) |
| 2 |
|
evl1var.v |
⊢ 𝑋 = ( var1 ‘ 𝑅 ) |
| 3 |
|
evl1var.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
| 4 |
|
crngring |
⊢ ( 𝑅 ∈ CRing → 𝑅 ∈ Ring ) |
| 5 |
|
eqid |
⊢ ( Poly1 ‘ 𝑅 ) = ( Poly1 ‘ 𝑅 ) |
| 6 |
|
eqid |
⊢ ( Base ‘ ( Poly1 ‘ 𝑅 ) ) = ( Base ‘ ( Poly1 ‘ 𝑅 ) ) |
| 7 |
2 5 6
|
vr1cl |
⊢ ( 𝑅 ∈ Ring → 𝑋 ∈ ( Base ‘ ( Poly1 ‘ 𝑅 ) ) ) |
| 8 |
4 7
|
syl |
⊢ ( 𝑅 ∈ CRing → 𝑋 ∈ ( Base ‘ ( Poly1 ‘ 𝑅 ) ) ) |
| 9 |
|
eqid |
⊢ ( 1o eval 𝑅 ) = ( 1o eval 𝑅 ) |
| 10 |
|
eqid |
⊢ ( 1o mPoly 𝑅 ) = ( 1o mPoly 𝑅 ) |
| 11 |
5 6
|
ply1bas |
⊢ ( Base ‘ ( Poly1 ‘ 𝑅 ) ) = ( Base ‘ ( 1o mPoly 𝑅 ) ) |
| 12 |
1 9 3 10 11
|
evl1val |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑋 ∈ ( Base ‘ ( Poly1 ‘ 𝑅 ) ) ) → ( 𝑂 ‘ 𝑋 ) = ( ( ( 1o eval 𝑅 ) ‘ 𝑋 ) ∘ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) ) |
| 13 |
8 12
|
mpdan |
⊢ ( 𝑅 ∈ CRing → ( 𝑂 ‘ 𝑋 ) = ( ( ( 1o eval 𝑅 ) ‘ 𝑋 ) ∘ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) ) |
| 14 |
|
df1o2 |
⊢ 1o = { ∅ } |
| 15 |
3
|
fvexi |
⊢ 𝐵 ∈ V |
| 16 |
|
0ex |
⊢ ∅ ∈ V |
| 17 |
|
eqid |
⊢ ( 𝑧 ∈ ( 𝐵 ↑m 1o ) ↦ ( 𝑧 ‘ ∅ ) ) = ( 𝑧 ∈ ( 𝐵 ↑m 1o ) ↦ ( 𝑧 ‘ ∅ ) ) |
| 18 |
14 15 16 17
|
mapsncnv |
⊢ ◡ ( 𝑧 ∈ ( 𝐵 ↑m 1o ) ↦ ( 𝑧 ‘ ∅ ) ) = ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) |
| 19 |
18
|
coeq2i |
⊢ ( ( ( 1o eval 𝑅 ) ‘ 𝑋 ) ∘ ◡ ( 𝑧 ∈ ( 𝐵 ↑m 1o ) ↦ ( 𝑧 ‘ ∅ ) ) ) = ( ( ( 1o eval 𝑅 ) ‘ 𝑋 ) ∘ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) |
| 20 |
3
|
ressid |
⊢ ( 𝑅 ∈ CRing → ( 𝑅 ↾s 𝐵 ) = 𝑅 ) |
| 21 |
20
|
oveq2d |
⊢ ( 𝑅 ∈ CRing → ( 1o mVar ( 𝑅 ↾s 𝐵 ) ) = ( 1o mVar 𝑅 ) ) |
| 22 |
21
|
fveq1d |
⊢ ( 𝑅 ∈ CRing → ( ( 1o mVar ( 𝑅 ↾s 𝐵 ) ) ‘ ∅ ) = ( ( 1o mVar 𝑅 ) ‘ ∅ ) ) |
| 23 |
2
|
vr1val |
⊢ 𝑋 = ( ( 1o mVar 𝑅 ) ‘ ∅ ) |
| 24 |
22 23
|
eqtr4di |
⊢ ( 𝑅 ∈ CRing → ( ( 1o mVar ( 𝑅 ↾s 𝐵 ) ) ‘ ∅ ) = 𝑋 ) |
| 25 |
24
|
fveq2d |
⊢ ( 𝑅 ∈ CRing → ( ( 1o eval 𝑅 ) ‘ ( ( 1o mVar ( 𝑅 ↾s 𝐵 ) ) ‘ ∅ ) ) = ( ( 1o eval 𝑅 ) ‘ 𝑋 ) ) |
| 26 |
9 3
|
evlval |
⊢ ( 1o eval 𝑅 ) = ( ( 1o evalSub 𝑅 ) ‘ 𝐵 ) |
| 27 |
|
eqid |
⊢ ( 1o mVar ( 𝑅 ↾s 𝐵 ) ) = ( 1o mVar ( 𝑅 ↾s 𝐵 ) ) |
| 28 |
|
eqid |
⊢ ( 𝑅 ↾s 𝐵 ) = ( 𝑅 ↾s 𝐵 ) |
| 29 |
|
1on |
⊢ 1o ∈ On |
| 30 |
29
|
a1i |
⊢ ( 𝑅 ∈ CRing → 1o ∈ On ) |
| 31 |
|
id |
⊢ ( 𝑅 ∈ CRing → 𝑅 ∈ CRing ) |
| 32 |
3
|
subrgid |
⊢ ( 𝑅 ∈ Ring → 𝐵 ∈ ( SubRing ‘ 𝑅 ) ) |
| 33 |
4 32
|
syl |
⊢ ( 𝑅 ∈ CRing → 𝐵 ∈ ( SubRing ‘ 𝑅 ) ) |
| 34 |
|
0lt1o |
⊢ ∅ ∈ 1o |
| 35 |
34
|
a1i |
⊢ ( 𝑅 ∈ CRing → ∅ ∈ 1o ) |
| 36 |
26 27 28 3 30 31 33 35
|
evlsvar |
⊢ ( 𝑅 ∈ CRing → ( ( 1o eval 𝑅 ) ‘ ( ( 1o mVar ( 𝑅 ↾s 𝐵 ) ) ‘ ∅ ) ) = ( 𝑧 ∈ ( 𝐵 ↑m 1o ) ↦ ( 𝑧 ‘ ∅ ) ) ) |
| 37 |
25 36
|
eqtr3d |
⊢ ( 𝑅 ∈ CRing → ( ( 1o eval 𝑅 ) ‘ 𝑋 ) = ( 𝑧 ∈ ( 𝐵 ↑m 1o ) ↦ ( 𝑧 ‘ ∅ ) ) ) |
| 38 |
37
|
coeq1d |
⊢ ( 𝑅 ∈ CRing → ( ( ( 1o eval 𝑅 ) ‘ 𝑋 ) ∘ ◡ ( 𝑧 ∈ ( 𝐵 ↑m 1o ) ↦ ( 𝑧 ‘ ∅ ) ) ) = ( ( 𝑧 ∈ ( 𝐵 ↑m 1o ) ↦ ( 𝑧 ‘ ∅ ) ) ∘ ◡ ( 𝑧 ∈ ( 𝐵 ↑m 1o ) ↦ ( 𝑧 ‘ ∅ ) ) ) ) |
| 39 |
19 38
|
eqtr3id |
⊢ ( 𝑅 ∈ CRing → ( ( ( 1o eval 𝑅 ) ‘ 𝑋 ) ∘ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) = ( ( 𝑧 ∈ ( 𝐵 ↑m 1o ) ↦ ( 𝑧 ‘ ∅ ) ) ∘ ◡ ( 𝑧 ∈ ( 𝐵 ↑m 1o ) ↦ ( 𝑧 ‘ ∅ ) ) ) ) |
| 40 |
14 15 16 17
|
mapsnf1o2 |
⊢ ( 𝑧 ∈ ( 𝐵 ↑m 1o ) ↦ ( 𝑧 ‘ ∅ ) ) : ( 𝐵 ↑m 1o ) –1-1-onto→ 𝐵 |
| 41 |
|
f1ococnv2 |
⊢ ( ( 𝑧 ∈ ( 𝐵 ↑m 1o ) ↦ ( 𝑧 ‘ ∅ ) ) : ( 𝐵 ↑m 1o ) –1-1-onto→ 𝐵 → ( ( 𝑧 ∈ ( 𝐵 ↑m 1o ) ↦ ( 𝑧 ‘ ∅ ) ) ∘ ◡ ( 𝑧 ∈ ( 𝐵 ↑m 1o ) ↦ ( 𝑧 ‘ ∅ ) ) ) = ( I ↾ 𝐵 ) ) |
| 42 |
40 41
|
mp1i |
⊢ ( 𝑅 ∈ CRing → ( ( 𝑧 ∈ ( 𝐵 ↑m 1o ) ↦ ( 𝑧 ‘ ∅ ) ) ∘ ◡ ( 𝑧 ∈ ( 𝐵 ↑m 1o ) ↦ ( 𝑧 ‘ ∅ ) ) ) = ( I ↾ 𝐵 ) ) |
| 43 |
13 39 42
|
3eqtrd |
⊢ ( 𝑅 ∈ CRing → ( 𝑂 ‘ 𝑋 ) = ( I ↾ 𝐵 ) ) |