| Step |
Hyp |
Ref |
Expression |
| 1 |
|
evl1var.q |
⊢ 𝑂 = ( eval1 ‘ 𝑅 ) |
| 2 |
|
evl1var.v |
⊢ 𝑋 = ( var1 ‘ 𝑅 ) |
| 3 |
|
evl1var.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
| 4 |
|
evl1vard.p |
⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) |
| 5 |
|
evl1vard.u |
⊢ 𝑈 = ( Base ‘ 𝑃 ) |
| 6 |
|
evl1vard.1 |
⊢ ( 𝜑 → 𝑅 ∈ CRing ) |
| 7 |
|
evl1vard.2 |
⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) |
| 8 |
|
crngring |
⊢ ( 𝑅 ∈ CRing → 𝑅 ∈ Ring ) |
| 9 |
2 4 5
|
vr1cl |
⊢ ( 𝑅 ∈ Ring → 𝑋 ∈ 𝑈 ) |
| 10 |
6 8 9
|
3syl |
⊢ ( 𝜑 → 𝑋 ∈ 𝑈 ) |
| 11 |
1 2 3
|
evl1var |
⊢ ( 𝑅 ∈ CRing → ( 𝑂 ‘ 𝑋 ) = ( I ↾ 𝐵 ) ) |
| 12 |
6 11
|
syl |
⊢ ( 𝜑 → ( 𝑂 ‘ 𝑋 ) = ( I ↾ 𝐵 ) ) |
| 13 |
12
|
fveq1d |
⊢ ( 𝜑 → ( ( 𝑂 ‘ 𝑋 ) ‘ 𝑌 ) = ( ( I ↾ 𝐵 ) ‘ 𝑌 ) ) |
| 14 |
|
fvresi |
⊢ ( 𝑌 ∈ 𝐵 → ( ( I ↾ 𝐵 ) ‘ 𝑌 ) = 𝑌 ) |
| 15 |
7 14
|
syl |
⊢ ( 𝜑 → ( ( I ↾ 𝐵 ) ‘ 𝑌 ) = 𝑌 ) |
| 16 |
13 15
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝑂 ‘ 𝑋 ) ‘ 𝑌 ) = 𝑌 ) |
| 17 |
10 16
|
jca |
⊢ ( 𝜑 → ( 𝑋 ∈ 𝑈 ∧ ( ( 𝑂 ‘ 𝑋 ) ‘ 𝑌 ) = 𝑌 ) ) |