Step |
Hyp |
Ref |
Expression |
1 |
|
evl1fval.o |
⊢ 𝑂 = ( eval1 ‘ 𝑅 ) |
2 |
|
evl1fval.q |
⊢ 𝑄 = ( 1o eval 𝑅 ) |
3 |
|
evl1fval.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
4 |
|
evl1val.m |
⊢ 𝑀 = ( 1o mPoly 𝑅 ) |
5 |
|
evl1val.k |
⊢ 𝐾 = ( Base ‘ 𝑀 ) |
6 |
1 2 3
|
evl1fval |
⊢ 𝑂 = ( ( 𝑥 ∈ ( 𝐵 ↑m ( 𝐵 ↑m 1o ) ) ↦ ( 𝑥 ∘ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) ) ∘ 𝑄 ) |
7 |
6
|
fveq1i |
⊢ ( 𝑂 ‘ 𝐴 ) = ( ( ( 𝑥 ∈ ( 𝐵 ↑m ( 𝐵 ↑m 1o ) ) ↦ ( 𝑥 ∘ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) ) ∘ 𝑄 ) ‘ 𝐴 ) |
8 |
|
1on |
⊢ 1o ∈ On |
9 |
|
simpl |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝐴 ∈ 𝐾 ) → 𝑅 ∈ CRing ) |
10 |
|
eqid |
⊢ ( 𝑅 ↑s ( 𝐵 ↑m 1o ) ) = ( 𝑅 ↑s ( 𝐵 ↑m 1o ) ) |
11 |
2 3 4 10
|
evlrhm |
⊢ ( ( 1o ∈ On ∧ 𝑅 ∈ CRing ) → 𝑄 ∈ ( 𝑀 RingHom ( 𝑅 ↑s ( 𝐵 ↑m 1o ) ) ) ) |
12 |
8 9 11
|
sylancr |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝐴 ∈ 𝐾 ) → 𝑄 ∈ ( 𝑀 RingHom ( 𝑅 ↑s ( 𝐵 ↑m 1o ) ) ) ) |
13 |
|
eqid |
⊢ ( Base ‘ ( 𝑅 ↑s ( 𝐵 ↑m 1o ) ) ) = ( Base ‘ ( 𝑅 ↑s ( 𝐵 ↑m 1o ) ) ) |
14 |
5 13
|
rhmf |
⊢ ( 𝑄 ∈ ( 𝑀 RingHom ( 𝑅 ↑s ( 𝐵 ↑m 1o ) ) ) → 𝑄 : 𝐾 ⟶ ( Base ‘ ( 𝑅 ↑s ( 𝐵 ↑m 1o ) ) ) ) |
15 |
12 14
|
syl |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝐴 ∈ 𝐾 ) → 𝑄 : 𝐾 ⟶ ( Base ‘ ( 𝑅 ↑s ( 𝐵 ↑m 1o ) ) ) ) |
16 |
|
fvco3 |
⊢ ( ( 𝑄 : 𝐾 ⟶ ( Base ‘ ( 𝑅 ↑s ( 𝐵 ↑m 1o ) ) ) ∧ 𝐴 ∈ 𝐾 ) → ( ( ( 𝑥 ∈ ( 𝐵 ↑m ( 𝐵 ↑m 1o ) ) ↦ ( 𝑥 ∘ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) ) ∘ 𝑄 ) ‘ 𝐴 ) = ( ( 𝑥 ∈ ( 𝐵 ↑m ( 𝐵 ↑m 1o ) ) ↦ ( 𝑥 ∘ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) ) ‘ ( 𝑄 ‘ 𝐴 ) ) ) |
17 |
15 16
|
sylancom |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝐴 ∈ 𝐾 ) → ( ( ( 𝑥 ∈ ( 𝐵 ↑m ( 𝐵 ↑m 1o ) ) ↦ ( 𝑥 ∘ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) ) ∘ 𝑄 ) ‘ 𝐴 ) = ( ( 𝑥 ∈ ( 𝐵 ↑m ( 𝐵 ↑m 1o ) ) ↦ ( 𝑥 ∘ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) ) ‘ ( 𝑄 ‘ 𝐴 ) ) ) |
18 |
7 17
|
eqtrid |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝐴 ∈ 𝐾 ) → ( 𝑂 ‘ 𝐴 ) = ( ( 𝑥 ∈ ( 𝐵 ↑m ( 𝐵 ↑m 1o ) ) ↦ ( 𝑥 ∘ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) ) ‘ ( 𝑄 ‘ 𝐴 ) ) ) |
19 |
|
ffvelrn |
⊢ ( ( 𝑄 : 𝐾 ⟶ ( Base ‘ ( 𝑅 ↑s ( 𝐵 ↑m 1o ) ) ) ∧ 𝐴 ∈ 𝐾 ) → ( 𝑄 ‘ 𝐴 ) ∈ ( Base ‘ ( 𝑅 ↑s ( 𝐵 ↑m 1o ) ) ) ) |
20 |
15 19
|
sylancom |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝐴 ∈ 𝐾 ) → ( 𝑄 ‘ 𝐴 ) ∈ ( Base ‘ ( 𝑅 ↑s ( 𝐵 ↑m 1o ) ) ) ) |
21 |
|
crngring |
⊢ ( 𝑅 ∈ CRing → 𝑅 ∈ Ring ) |
22 |
21
|
adantr |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝐴 ∈ 𝐾 ) → 𝑅 ∈ Ring ) |
23 |
|
ovex |
⊢ ( 𝐵 ↑m 1o ) ∈ V |
24 |
10 3
|
pwsbas |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝐵 ↑m 1o ) ∈ V ) → ( 𝐵 ↑m ( 𝐵 ↑m 1o ) ) = ( Base ‘ ( 𝑅 ↑s ( 𝐵 ↑m 1o ) ) ) ) |
25 |
22 23 24
|
sylancl |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝐴 ∈ 𝐾 ) → ( 𝐵 ↑m ( 𝐵 ↑m 1o ) ) = ( Base ‘ ( 𝑅 ↑s ( 𝐵 ↑m 1o ) ) ) ) |
26 |
20 25
|
eleqtrrd |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝐴 ∈ 𝐾 ) → ( 𝑄 ‘ 𝐴 ) ∈ ( 𝐵 ↑m ( 𝐵 ↑m 1o ) ) ) |
27 |
|
coeq1 |
⊢ ( 𝑥 = ( 𝑄 ‘ 𝐴 ) → ( 𝑥 ∘ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) = ( ( 𝑄 ‘ 𝐴 ) ∘ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) ) |
28 |
|
eqid |
⊢ ( 𝑥 ∈ ( 𝐵 ↑m ( 𝐵 ↑m 1o ) ) ↦ ( 𝑥 ∘ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) ) = ( 𝑥 ∈ ( 𝐵 ↑m ( 𝐵 ↑m 1o ) ) ↦ ( 𝑥 ∘ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) ) |
29 |
|
fvex |
⊢ ( 𝑄 ‘ 𝐴 ) ∈ V |
30 |
3
|
fvexi |
⊢ 𝐵 ∈ V |
31 |
30
|
mptex |
⊢ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ∈ V |
32 |
29 31
|
coex |
⊢ ( ( 𝑄 ‘ 𝐴 ) ∘ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) ∈ V |
33 |
27 28 32
|
fvmpt |
⊢ ( ( 𝑄 ‘ 𝐴 ) ∈ ( 𝐵 ↑m ( 𝐵 ↑m 1o ) ) → ( ( 𝑥 ∈ ( 𝐵 ↑m ( 𝐵 ↑m 1o ) ) ↦ ( 𝑥 ∘ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) ) ‘ ( 𝑄 ‘ 𝐴 ) ) = ( ( 𝑄 ‘ 𝐴 ) ∘ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) ) |
34 |
26 33
|
syl |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝐴 ∈ 𝐾 ) → ( ( 𝑥 ∈ ( 𝐵 ↑m ( 𝐵 ↑m 1o ) ) ↦ ( 𝑥 ∘ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) ) ‘ ( 𝑄 ‘ 𝐴 ) ) = ( ( 𝑄 ‘ 𝐴 ) ∘ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) ) |
35 |
18 34
|
eqtrd |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝐴 ∈ 𝐾 ) → ( 𝑂 ‘ 𝐴 ) = ( ( 𝑄 ‘ 𝐴 ) ∘ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) ) |