| Step |
Hyp |
Ref |
Expression |
| 1 |
|
evl1fval1.q |
⊢ 𝑄 = ( eval1 ‘ 𝑅 ) |
| 2 |
|
evl1fval1.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
| 3 |
|
eqid |
⊢ ( eval1 ‘ 𝑅 ) = ( eval1 ‘ 𝑅 ) |
| 4 |
|
eqid |
⊢ ( 1o eval 𝑅 ) = ( 1o eval 𝑅 ) |
| 5 |
3 4 2
|
evl1fval |
⊢ ( eval1 ‘ 𝑅 ) = ( ( 𝑥 ∈ ( 𝐵 ↑m ( 𝐵 ↑m 1o ) ) ↦ ( 𝑥 ∘ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) ) ∘ ( 1o eval 𝑅 ) ) |
| 6 |
1
|
a1i |
⊢ ( 𝑅 ∈ 𝑉 → 𝑄 = ( eval1 ‘ 𝑅 ) ) |
| 7 |
2
|
fvexi |
⊢ 𝐵 ∈ V |
| 8 |
7
|
pwid |
⊢ 𝐵 ∈ 𝒫 𝐵 |
| 9 |
|
eqid |
⊢ ( 𝑅 evalSub1 𝐵 ) = ( 𝑅 evalSub1 𝐵 ) |
| 10 |
|
eqid |
⊢ ( 1o evalSub 𝑅 ) = ( 1o evalSub 𝑅 ) |
| 11 |
9 10 2
|
evls1fval |
⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝐵 ∈ 𝒫 𝐵 ) → ( 𝑅 evalSub1 𝐵 ) = ( ( 𝑥 ∈ ( 𝐵 ↑m ( 𝐵 ↑m 1o ) ) ↦ ( 𝑥 ∘ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) ) ∘ ( ( 1o evalSub 𝑅 ) ‘ 𝐵 ) ) ) |
| 12 |
8 11
|
mpan2 |
⊢ ( 𝑅 ∈ 𝑉 → ( 𝑅 evalSub1 𝐵 ) = ( ( 𝑥 ∈ ( 𝐵 ↑m ( 𝐵 ↑m 1o ) ) ↦ ( 𝑥 ∘ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) ) ∘ ( ( 1o evalSub 𝑅 ) ‘ 𝐵 ) ) ) |
| 13 |
4 2
|
evlval |
⊢ ( 1o eval 𝑅 ) = ( ( 1o evalSub 𝑅 ) ‘ 𝐵 ) |
| 14 |
13
|
eqcomi |
⊢ ( ( 1o evalSub 𝑅 ) ‘ 𝐵 ) = ( 1o eval 𝑅 ) |
| 15 |
14
|
coeq2i |
⊢ ( ( 𝑥 ∈ ( 𝐵 ↑m ( 𝐵 ↑m 1o ) ) ↦ ( 𝑥 ∘ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) ) ∘ ( ( 1o evalSub 𝑅 ) ‘ 𝐵 ) ) = ( ( 𝑥 ∈ ( 𝐵 ↑m ( 𝐵 ↑m 1o ) ) ↦ ( 𝑥 ∘ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) ) ∘ ( 1o eval 𝑅 ) ) |
| 16 |
12 15
|
eqtrdi |
⊢ ( 𝑅 ∈ 𝑉 → ( 𝑅 evalSub1 𝐵 ) = ( ( 𝑥 ∈ ( 𝐵 ↑m ( 𝐵 ↑m 1o ) ) ↦ ( 𝑥 ∘ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) ) ∘ ( 1o eval 𝑅 ) ) ) |
| 17 |
5 6 16
|
3eqtr4a |
⊢ ( 𝑅 ∈ 𝑉 → 𝑄 = ( 𝑅 evalSub1 𝐵 ) ) |