| Step |
Hyp |
Ref |
Expression |
| 1 |
|
evlval.q |
⊢ 𝑄 = ( 𝐼 eval 𝑅 ) |
| 2 |
|
evlval.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
| 3 |
|
evlrhm.w |
⊢ 𝑊 = ( 𝐼 mPoly 𝑅 ) |
| 4 |
|
evlrhm.t |
⊢ 𝑇 = ( 𝑅 ↑s ( 𝐵 ↑m 𝐼 ) ) |
| 5 |
|
crngring |
⊢ ( 𝑅 ∈ CRing → 𝑅 ∈ Ring ) |
| 6 |
5
|
adantl |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑅 ∈ CRing ) → 𝑅 ∈ Ring ) |
| 7 |
2
|
subrgid |
⊢ ( 𝑅 ∈ Ring → 𝐵 ∈ ( SubRing ‘ 𝑅 ) ) |
| 8 |
6 7
|
syl |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑅 ∈ CRing ) → 𝐵 ∈ ( SubRing ‘ 𝑅 ) ) |
| 9 |
1 2
|
evlval |
⊢ 𝑄 = ( ( 𝐼 evalSub 𝑅 ) ‘ 𝐵 ) |
| 10 |
|
eqid |
⊢ ( 𝐼 mPoly ( 𝑅 ↾s 𝐵 ) ) = ( 𝐼 mPoly ( 𝑅 ↾s 𝐵 ) ) |
| 11 |
|
eqid |
⊢ ( 𝑅 ↾s 𝐵 ) = ( 𝑅 ↾s 𝐵 ) |
| 12 |
9 10 11 4 2
|
evlsrhm |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑅 ∈ CRing ∧ 𝐵 ∈ ( SubRing ‘ 𝑅 ) ) → 𝑄 ∈ ( ( 𝐼 mPoly ( 𝑅 ↾s 𝐵 ) ) RingHom 𝑇 ) ) |
| 13 |
8 12
|
mpd3an3 |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑅 ∈ CRing ) → 𝑄 ∈ ( ( 𝐼 mPoly ( 𝑅 ↾s 𝐵 ) ) RingHom 𝑇 ) ) |
| 14 |
2
|
ressid |
⊢ ( 𝑅 ∈ CRing → ( 𝑅 ↾s 𝐵 ) = 𝑅 ) |
| 15 |
14
|
adantl |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑅 ∈ CRing ) → ( 𝑅 ↾s 𝐵 ) = 𝑅 ) |
| 16 |
15
|
oveq2d |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑅 ∈ CRing ) → ( 𝐼 mPoly ( 𝑅 ↾s 𝐵 ) ) = ( 𝐼 mPoly 𝑅 ) ) |
| 17 |
16 3
|
eqtr4di |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑅 ∈ CRing ) → ( 𝐼 mPoly ( 𝑅 ↾s 𝐵 ) ) = 𝑊 ) |
| 18 |
17
|
oveq1d |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑅 ∈ CRing ) → ( ( 𝐼 mPoly ( 𝑅 ↾s 𝐵 ) ) RingHom 𝑇 ) = ( 𝑊 RingHom 𝑇 ) ) |
| 19 |
13 18
|
eleqtrd |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑅 ∈ CRing ) → 𝑄 ∈ ( 𝑊 RingHom 𝑇 ) ) |