Metamath Proof Explorer


Theorem evlrhm

Description: The simple evaluation map is a ring homomorphism. (Contributed by Mario Carneiro, 12-Jun-2015)

Ref Expression
Hypotheses evlval.q Q=IevalR
evlval.b B=BaseR
evlrhm.w W=ImPolyR
evlrhm.t T=R𝑠BI
Assertion evlrhm IVRCRingQWRingHomT

Proof

Step Hyp Ref Expression
1 evlval.q Q=IevalR
2 evlval.b B=BaseR
3 evlrhm.w W=ImPolyR
4 evlrhm.t T=R𝑠BI
5 crngring RCRingRRing
6 5 adantl IVRCRingRRing
7 2 subrgid RRingBSubRingR
8 6 7 syl IVRCRingBSubRingR
9 1 2 evlval Q=IevalSubRB
10 eqid ImPolyR𝑠B=ImPolyR𝑠B
11 eqid R𝑠B=R𝑠B
12 9 10 11 4 2 evlsrhm IVRCRingBSubRingRQImPolyR𝑠BRingHomT
13 8 12 mpd3an3 IVRCRingQImPolyR𝑠BRingHomT
14 2 ressid RCRingR𝑠B=R
15 14 adantl IVRCRingR𝑠B=R
16 15 oveq2d IVRCRingImPolyR𝑠B=ImPolyR
17 16 3 eqtr4di IVRCRingImPolyR𝑠B=W
18 17 oveq1d IVRCRingImPolyR𝑠BRingHomT=WRingHomT
19 13 18 eleqtrd IVRCRingQWRingHomT