Metamath Proof Explorer


Theorem evlval

Description: Value of the simple/same ring evaluation map. (Contributed by Stefan O'Rear, 19-Mar-2015) (Revised by Mario Carneiro, 12-Jun-2015)

Ref Expression
Hypotheses evlval.q Q=IevalR
evlval.b B=BaseR
Assertion evlval Q=IevalSubRB

Proof

Step Hyp Ref Expression
1 evlval.q Q=IevalR
2 evlval.b B=BaseR
3 oveq12 i=Ir=RievalSubr=IevalSubR
4 fveq2 r=RBaser=BaseR
5 4 2 eqtr4di r=RBaser=B
6 5 adantl i=Ir=RBaser=B
7 3 6 fveq12d i=Ir=RievalSubrBaser=IevalSubRB
8 df-evl eval=iV,rVievalSubrBaser
9 fvex IevalSubRBV
10 7 8 9 ovmpoa IVRVIevalR=IevalSubRB
11 8 mpondm0 ¬IVRVIevalR=
12 0fv B=
13 11 12 eqtr4di ¬IVRVIevalR=B
14 reldmevls ReldomevalSub
15 14 ovprc ¬IVRVIevalSubR=
16 15 fveq1d ¬IVRVIevalSubRB=B
17 13 16 eqtr4d ¬IVRVIevalR=IevalSubRB
18 10 17 pm2.61i IevalR=IevalSubRB
19 1 18 eqtri Q=IevalSubRB