Metamath Proof Explorer


Theorem evl1varpwval

Description: Value of a univariate polynomial evaluation mapping the exponentiation of a variable to the exponentiation of the evaluated variable. (Contributed by AV, 14-Sep-2019)

Ref Expression
Hypotheses evl1varpw.q Q=eval1R
evl1varpw.w W=Poly1R
evl1varpw.g G=mulGrpW
evl1varpw.x X=var1R
evl1varpw.b B=BaseR
evl1varpw.e ×˙=G
evl1varpw.r φRCRing
evl1varpw.n φN0
evl1varpwval.c φCB
evl1varpwval.h H=mulGrpR
evl1varpwval.e E=H
Assertion evl1varpwval φQN×˙XC=NEC

Proof

Step Hyp Ref Expression
1 evl1varpw.q Q=eval1R
2 evl1varpw.w W=Poly1R
3 evl1varpw.g G=mulGrpW
4 evl1varpw.x X=var1R
5 evl1varpw.b B=BaseR
6 evl1varpw.e ×˙=G
7 evl1varpw.r φRCRing
8 evl1varpw.n φN0
9 evl1varpwval.c φCB
10 evl1varpwval.h H=mulGrpR
11 evl1varpwval.e E=H
12 eqid BaseW=BaseW
13 1 4 5 2 12 7 9 evl1vard φXBaseWQXC=C
14 3 fveq2i G=mulGrpW
15 6 14 eqtri ×˙=mulGrpW
16 10 fveq2i H=mulGrpR
17 11 16 eqtri E=mulGrpR
18 1 2 5 12 7 9 13 15 17 8 evl1expd φN×˙XBaseWQN×˙XC=NEC
19 18 simprd φQN×˙XC=NEC