Step |
Hyp |
Ref |
Expression |
1 |
|
fvdifsupp.1 |
|- ( ph -> F Fn A ) |
2 |
|
fvdifsupp.2 |
|- ( ph -> A e. V ) |
3 |
|
fvdifsupp.3 |
|- ( ph -> Z e. W ) |
4 |
|
fvdifsupp.4 |
|- ( ph -> X e. ( A \ ( F supp Z ) ) ) |
5 |
4
|
eldifbd |
|- ( ph -> -. X e. ( F supp Z ) ) |
6 |
4
|
eldifad |
|- ( ph -> X e. A ) |
7 |
|
elsuppfn |
|- ( ( F Fn A /\ A e. V /\ Z e. W ) -> ( X e. ( F supp Z ) <-> ( X e. A /\ ( F ` X ) =/= Z ) ) ) |
8 |
1 2 3 7
|
syl3anc |
|- ( ph -> ( X e. ( F supp Z ) <-> ( X e. A /\ ( F ` X ) =/= Z ) ) ) |
9 |
6 8
|
mpbirand |
|- ( ph -> ( X e. ( F supp Z ) <-> ( F ` X ) =/= Z ) ) |
10 |
9
|
necon2bbid |
|- ( ph -> ( ( F ` X ) = Z <-> -. X e. ( F supp Z ) ) ) |
11 |
5 10
|
mpbird |
|- ( ph -> ( F ` X ) = Z ) |