Metamath Proof Explorer


Theorem fvdifsupp

Description: Function value is zero outside of its support. (Contributed by Thierry Arnoux, 21-Jan-2024)

Ref Expression
Hypotheses fvdifsupp.1 φFFnA
fvdifsupp.2 φAV
fvdifsupp.3 φZW
fvdifsupp.4 φXAsuppZF
Assertion fvdifsupp φFX=Z

Proof

Step Hyp Ref Expression
1 fvdifsupp.1 φFFnA
2 fvdifsupp.2 φAV
3 fvdifsupp.3 φZW
4 fvdifsupp.4 φXAsuppZF
5 4 eldifbd φ¬XsuppZF
6 4 eldifad φXA
7 elsuppfn FFnAAVZWXsuppZFXAFXZ
8 1 2 3 7 syl3anc φXsuppZFXAFXZ
9 6 8 mpbirand φXsuppZFFXZ
10 9 necon2bbid φFX=Z¬XsuppZF
11 5 10 mpbird φFX=Z