| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fvdifsupp.1 |
⊢ ( 𝜑 → 𝐹 Fn 𝐴 ) |
| 2 |
|
fvdifsupp.2 |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
| 3 |
|
fvdifsupp.3 |
⊢ ( 𝜑 → 𝑍 ∈ 𝑊 ) |
| 4 |
|
fvdifsupp.4 |
⊢ ( 𝜑 → 𝑋 ∈ ( 𝐴 ∖ ( 𝐹 supp 𝑍 ) ) ) |
| 5 |
4
|
eldifbd |
⊢ ( 𝜑 → ¬ 𝑋 ∈ ( 𝐹 supp 𝑍 ) ) |
| 6 |
4
|
eldifad |
⊢ ( 𝜑 → 𝑋 ∈ 𝐴 ) |
| 7 |
|
elsuppfn |
⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝐴 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) → ( 𝑋 ∈ ( 𝐹 supp 𝑍 ) ↔ ( 𝑋 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑋 ) ≠ 𝑍 ) ) ) |
| 8 |
1 2 3 7
|
syl3anc |
⊢ ( 𝜑 → ( 𝑋 ∈ ( 𝐹 supp 𝑍 ) ↔ ( 𝑋 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑋 ) ≠ 𝑍 ) ) ) |
| 9 |
6 8
|
mpbirand |
⊢ ( 𝜑 → ( 𝑋 ∈ ( 𝐹 supp 𝑍 ) ↔ ( 𝐹 ‘ 𝑋 ) ≠ 𝑍 ) ) |
| 10 |
9
|
necon2bbid |
⊢ ( 𝜑 → ( ( 𝐹 ‘ 𝑋 ) = 𝑍 ↔ ¬ 𝑋 ∈ ( 𝐹 supp 𝑍 ) ) ) |
| 11 |
5 10
|
mpbird |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝑋 ) = 𝑍 ) |