Metamath Proof Explorer


Theorem coe1sfi

Description: Finite support of univariate polynomial coefficient vectors. (Contributed by Stefan O'Rear, 21-Mar-2015) (Revised by AV, 19-Jul-2019)

Ref Expression
Hypotheses coe1sfi.a
|- A = ( coe1 ` F )
coe1sfi.b
|- B = ( Base ` P )
coe1sfi.p
|- P = ( Poly1 ` R )
coe1sfi.z
|- .0. = ( 0g ` R )
Assertion coe1sfi
|- ( F e. B -> A finSupp .0. )

Proof

Step Hyp Ref Expression
1 coe1sfi.a
 |-  A = ( coe1 ` F )
2 coe1sfi.b
 |-  B = ( Base ` P )
3 coe1sfi.p
 |-  P = ( Poly1 ` R )
4 coe1sfi.z
 |-  .0. = ( 0g ` R )
5 df1o2
 |-  1o = { (/) }
6 nn0ex
 |-  NN0 e. _V
7 0ex
 |-  (/) e. _V
8 eqid
 |-  ( x e. ( NN0 ^m 1o ) |-> ( x ` (/) ) ) = ( x e. ( NN0 ^m 1o ) |-> ( x ` (/) ) )
9 5 6 7 8 mapsncnv
 |-  `' ( x e. ( NN0 ^m 1o ) |-> ( x ` (/) ) ) = ( y e. NN0 |-> ( 1o X. { y } ) )
10 1 2 3 9 coe1fval2
 |-  ( F e. B -> A = ( F o. `' ( x e. ( NN0 ^m 1o ) |-> ( x ` (/) ) ) ) )
11 eqid
 |-  ( 1o mPoly R ) = ( 1o mPoly R )
12 eqid
 |-  ( Base ` ( 1o mPoly R ) ) = ( Base ` ( 1o mPoly R ) )
13 3 2 ply1bascl2
 |-  ( F e. B -> F e. ( Base ` ( 1o mPoly R ) ) )
14 3 2 elbasfv
 |-  ( F e. B -> R e. _V )
15 11 12 4 13 14 mplelsfi
 |-  ( F e. B -> F finSupp .0. )
16 5 6 7 8 mapsnf1o2
 |-  ( x e. ( NN0 ^m 1o ) |-> ( x ` (/) ) ) : ( NN0 ^m 1o ) -1-1-onto-> NN0
17 f1ocnv
 |-  ( ( x e. ( NN0 ^m 1o ) |-> ( x ` (/) ) ) : ( NN0 ^m 1o ) -1-1-onto-> NN0 -> `' ( x e. ( NN0 ^m 1o ) |-> ( x ` (/) ) ) : NN0 -1-1-onto-> ( NN0 ^m 1o ) )
18 f1of1
 |-  ( `' ( x e. ( NN0 ^m 1o ) |-> ( x ` (/) ) ) : NN0 -1-1-onto-> ( NN0 ^m 1o ) -> `' ( x e. ( NN0 ^m 1o ) |-> ( x ` (/) ) ) : NN0 -1-1-> ( NN0 ^m 1o ) )
19 16 17 18 mp2b
 |-  `' ( x e. ( NN0 ^m 1o ) |-> ( x ` (/) ) ) : NN0 -1-1-> ( NN0 ^m 1o )
20 19 a1i
 |-  ( F e. B -> `' ( x e. ( NN0 ^m 1o ) |-> ( x ` (/) ) ) : NN0 -1-1-> ( NN0 ^m 1o ) )
21 4 fvexi
 |-  .0. e. _V
22 21 a1i
 |-  ( F e. B -> .0. e. _V )
23 id
 |-  ( F e. B -> F e. B )
24 15 20 22 23 fsuppco
 |-  ( F e. B -> ( F o. `' ( x e. ( NN0 ^m 1o ) |-> ( x ` (/) ) ) ) finSupp .0. )
25 10 24 eqbrtrd
 |-  ( F e. B -> A finSupp .0. )