Description: A polynomial treated as a coefficient function has finitely many nonzero terms. (Contributed by Stefan O'Rear, 22-Mar-2015) (Revised by AV, 25-Jun-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | mplrcl.p | |- P = ( I mPoly R ) |
|
mplrcl.b | |- B = ( Base ` P ) |
||
mplelsfi.z | |- .0. = ( 0g ` R ) |
||
mplelsfi.f | |- ( ph -> F e. B ) |
||
mplelsfi.r | |- ( ph -> R e. V ) |
||
Assertion | mplelsfi | |- ( ph -> F finSupp .0. ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mplrcl.p | |- P = ( I mPoly R ) |
|
2 | mplrcl.b | |- B = ( Base ` P ) |
|
3 | mplelsfi.z | |- .0. = ( 0g ` R ) |
|
4 | mplelsfi.f | |- ( ph -> F e. B ) |
|
5 | mplelsfi.r | |- ( ph -> R e. V ) |
|
6 | eqid | |- ( I mPwSer R ) = ( I mPwSer R ) |
|
7 | eqid | |- ( Base ` ( I mPwSer R ) ) = ( Base ` ( I mPwSer R ) ) |
|
8 | 1 6 7 3 2 | mplelbas | |- ( F e. B <-> ( F e. ( Base ` ( I mPwSer R ) ) /\ F finSupp .0. ) ) |
9 | 8 | simprbi | |- ( F e. B -> F finSupp .0. ) |
10 | 4 9 | syl | |- ( ph -> F finSupp .0. ) |