Metamath Proof Explorer


Theorem mplelsfi

Description: A polynomial treated as a coefficient function has finitely many nonzero terms. (Contributed by Stefan O'Rear, 22-Mar-2015) (Revised by AV, 25-Jun-2019)

Ref Expression
Hypotheses mplrcl.p P=ImPolyR
mplrcl.b B=BaseP
mplelsfi.z 0˙=0R
mplelsfi.f φFB
mplelsfi.r φRV
Assertion mplelsfi φfinSupp0˙F

Proof

Step Hyp Ref Expression
1 mplrcl.p P=ImPolyR
2 mplrcl.b B=BaseP
3 mplelsfi.z 0˙=0R
4 mplelsfi.f φFB
5 mplelsfi.r φRV
6 eqid ImPwSerR=ImPwSerR
7 eqid BaseImPwSerR=BaseImPwSerR
8 1 6 7 3 2 mplelbas FBFBaseImPwSerRfinSupp0˙F
9 8 simprbi FBfinSupp0˙F
10 4 9 syl φfinSupp0˙F