Metamath Proof Explorer


Theorem coe1sfi

Description: Finite support of univariate polynomial coefficient vectors. (Contributed by Stefan O'Rear, 21-Mar-2015) (Revised by AV, 19-Jul-2019)

Ref Expression
Hypotheses coe1sfi.a A=coe1F
coe1sfi.b B=BaseP
coe1sfi.p P=Poly1R
coe1sfi.z 0˙=0R
Assertion coe1sfi FBfinSupp0˙A

Proof

Step Hyp Ref Expression
1 coe1sfi.a A=coe1F
2 coe1sfi.b B=BaseP
3 coe1sfi.p P=Poly1R
4 coe1sfi.z 0˙=0R
5 df1o2 1𝑜=
6 nn0ex 0V
7 0ex V
8 eqid x01𝑜x=x01𝑜x
9 5 6 7 8 mapsncnv x01𝑜x-1=y01𝑜×y
10 1 2 3 9 coe1fval2 FBA=Fx01𝑜x-1
11 eqid 1𝑜mPolyR=1𝑜mPolyR
12 eqid Base1𝑜mPolyR=Base1𝑜mPolyR
13 3 2 ply1bascl2 FBFBase1𝑜mPolyR
14 3 2 elbasfv FBRV
15 11 12 4 13 14 mplelsfi FBfinSupp0˙F
16 5 6 7 8 mapsnf1o2 x01𝑜x:01𝑜1-1 onto0
17 f1ocnv x01𝑜x:01𝑜1-1 onto0x01𝑜x-1:01-1 onto01𝑜
18 f1of1 x01𝑜x-1:01-1 onto01𝑜x01𝑜x-1:01-101𝑜
19 16 17 18 mp2b x01𝑜x-1:01-101𝑜
20 19 a1i FBx01𝑜x-1:01-101𝑜
21 4 fvexi 0˙V
22 21 a1i FB0˙V
23 id FBFB
24 15 20 22 23 fsuppco FBfinSupp0˙Fx01𝑜x-1
25 10 24 eqbrtrd FBfinSupp0˙A