Step |
Hyp |
Ref |
Expression |
1 |
|
ressply1evl.q |
|- Q = ( S evalSub1 R ) |
2 |
|
ressply1evl.k |
|- K = ( Base ` S ) |
3 |
|
ressply1evl.w |
|- W = ( Poly1 ` U ) |
4 |
|
ressply1evl.u |
|- U = ( S |`s R ) |
5 |
|
ressply1evl.b |
|- B = ( Base ` W ) |
6 |
|
ressply1evl.e |
|- E = ( eval1 ` S ) |
7 |
|
ressply1evl.s |
|- ( ph -> S e. CRing ) |
8 |
|
ressply1evl.r |
|- ( ph -> R e. ( SubRing ` S ) ) |
9 |
6 2
|
evl1fval1 |
|- E = ( S evalSub1 K ) |
10 |
|
eqid |
|- ( Poly1 ` ( S |`s K ) ) = ( Poly1 ` ( S |`s K ) ) |
11 |
|
eqid |
|- ( S |`s K ) = ( S |`s K ) |
12 |
|
eqid |
|- ( Base ` ( Poly1 ` ( S |`s K ) ) ) = ( Base ` ( Poly1 ` ( S |`s K ) ) ) |
13 |
7
|
adantr |
|- ( ( ph /\ m e. B ) -> S e. CRing ) |
14 |
7
|
crngringd |
|- ( ph -> S e. Ring ) |
15 |
2
|
subrgid |
|- ( S e. Ring -> K e. ( SubRing ` S ) ) |
16 |
14 15
|
syl |
|- ( ph -> K e. ( SubRing ` S ) ) |
17 |
16
|
adantr |
|- ( ( ph /\ m e. B ) -> K e. ( SubRing ` S ) ) |
18 |
|
eqid |
|- ( Poly1 ` S ) = ( Poly1 ` S ) |
19 |
|
eqid |
|- ( PwSer1 ` U ) = ( PwSer1 ` U ) |
20 |
|
eqid |
|- ( Base ` ( PwSer1 ` U ) ) = ( Base ` ( PwSer1 ` U ) ) |
21 |
|
eqid |
|- ( Base ` ( Poly1 ` S ) ) = ( Base ` ( Poly1 ` S ) ) |
22 |
18 4 3 5 8 19 20 21
|
ressply1bas2 |
|- ( ph -> B = ( ( Base ` ( PwSer1 ` U ) ) i^i ( Base ` ( Poly1 ` S ) ) ) ) |
23 |
|
inss2 |
|- ( ( Base ` ( PwSer1 ` U ) ) i^i ( Base ` ( Poly1 ` S ) ) ) C_ ( Base ` ( Poly1 ` S ) ) |
24 |
22 23
|
eqsstrdi |
|- ( ph -> B C_ ( Base ` ( Poly1 ` S ) ) ) |
25 |
2
|
ressid |
|- ( S e. CRing -> ( S |`s K ) = S ) |
26 |
7 25
|
syl |
|- ( ph -> ( S |`s K ) = S ) |
27 |
26
|
fveq2d |
|- ( ph -> ( Poly1 ` ( S |`s K ) ) = ( Poly1 ` S ) ) |
28 |
27
|
fveq2d |
|- ( ph -> ( Base ` ( Poly1 ` ( S |`s K ) ) ) = ( Base ` ( Poly1 ` S ) ) ) |
29 |
24 28
|
sseqtrrd |
|- ( ph -> B C_ ( Base ` ( Poly1 ` ( S |`s K ) ) ) ) |
30 |
29
|
sselda |
|- ( ( ph /\ m e. B ) -> m e. ( Base ` ( Poly1 ` ( S |`s K ) ) ) ) |
31 |
|
eqid |
|- ( .r ` S ) = ( .r ` S ) |
32 |
|
eqid |
|- ( .g ` ( mulGrp ` S ) ) = ( .g ` ( mulGrp ` S ) ) |
33 |
|
eqid |
|- ( coe1 ` m ) = ( coe1 ` m ) |
34 |
9 2 10 11 12 13 17 30 31 32 33
|
evls1fpws |
|- ( ( ph /\ m e. B ) -> ( E ` m ) = ( x e. K |-> ( S gsum ( k e. NN0 |-> ( ( ( coe1 ` m ) ` k ) ( .r ` S ) ( k ( .g ` ( mulGrp ` S ) ) x ) ) ) ) ) ) |
35 |
8
|
adantr |
|- ( ( ph /\ m e. B ) -> R e. ( SubRing ` S ) ) |
36 |
|
simpr |
|- ( ( ph /\ m e. B ) -> m e. B ) |
37 |
1 2 3 4 5 13 35 36 31 32 33
|
evls1fpws |
|- ( ( ph /\ m e. B ) -> ( Q ` m ) = ( x e. K |-> ( S gsum ( k e. NN0 |-> ( ( ( coe1 ` m ) ` k ) ( .r ` S ) ( k ( .g ` ( mulGrp ` S ) ) x ) ) ) ) ) ) |
38 |
34 37
|
eqtr4d |
|- ( ( ph /\ m e. B ) -> ( E ` m ) = ( Q ` m ) ) |
39 |
38
|
ralrimiva |
|- ( ph -> A. m e. B ( E ` m ) = ( Q ` m ) ) |
40 |
|
eqid |
|- ( S ^s K ) = ( S ^s K ) |
41 |
6 18 40 2
|
evl1rhm |
|- ( S e. CRing -> E e. ( ( Poly1 ` S ) RingHom ( S ^s K ) ) ) |
42 |
|
eqid |
|- ( Base ` ( S ^s K ) ) = ( Base ` ( S ^s K ) ) |
43 |
21 42
|
rhmf |
|- ( E e. ( ( Poly1 ` S ) RingHom ( S ^s K ) ) -> E : ( Base ` ( Poly1 ` S ) ) --> ( Base ` ( S ^s K ) ) ) |
44 |
7 41 43
|
3syl |
|- ( ph -> E : ( Base ` ( Poly1 ` S ) ) --> ( Base ` ( S ^s K ) ) ) |
45 |
44
|
ffnd |
|- ( ph -> E Fn ( Base ` ( Poly1 ` S ) ) ) |
46 |
1 2 40 4 3
|
evls1rhm |
|- ( ( S e. CRing /\ R e. ( SubRing ` S ) ) -> Q e. ( W RingHom ( S ^s K ) ) ) |
47 |
7 8 46
|
syl2anc |
|- ( ph -> Q e. ( W RingHom ( S ^s K ) ) ) |
48 |
5 42
|
rhmf |
|- ( Q e. ( W RingHom ( S ^s K ) ) -> Q : B --> ( Base ` ( S ^s K ) ) ) |
49 |
47 48
|
syl |
|- ( ph -> Q : B --> ( Base ` ( S ^s K ) ) ) |
50 |
49
|
ffnd |
|- ( ph -> Q Fn B ) |
51 |
|
fvreseq1 |
|- ( ( ( E Fn ( Base ` ( Poly1 ` S ) ) /\ Q Fn B ) /\ B C_ ( Base ` ( Poly1 ` S ) ) ) -> ( ( E |` B ) = Q <-> A. m e. B ( E ` m ) = ( Q ` m ) ) ) |
52 |
45 50 24 51
|
syl21anc |
|- ( ph -> ( ( E |` B ) = Q <-> A. m e. B ( E ` m ) = ( Q ` m ) ) ) |
53 |
39 52
|
mpbird |
|- ( ph -> ( E |` B ) = Q ) |
54 |
53
|
eqcomd |
|- ( ph -> Q = ( E |` B ) ) |