Step |
Hyp |
Ref |
Expression |
1 |
|
ressply1evl.q |
|- Q = ( S evalSub1 R ) |
2 |
|
ressply1evl.k |
|- K = ( Base ` S ) |
3 |
|
ressply1evl.w |
|- W = ( Poly1 ` U ) |
4 |
|
ressply1evl.u |
|- U = ( S |`s R ) |
5 |
|
ressply1evl.b |
|- B = ( Base ` W ) |
6 |
|
evls1addd.1 |
|- .+^ = ( +g ` W ) |
7 |
|
evls1addd.2 |
|- .+ = ( +g ` S ) |
8 |
|
evls1addd.s |
|- ( ph -> S e. CRing ) |
9 |
|
evls1addd.r |
|- ( ph -> R e. ( SubRing ` S ) ) |
10 |
|
evls1addd.m |
|- ( ph -> M e. B ) |
11 |
|
evls1addd.n |
|- ( ph -> N e. B ) |
12 |
|
evls1addd.y |
|- ( ph -> C e. K ) |
13 |
|
id |
|- ( ph -> ph ) |
14 |
|
eqid |
|- ( Poly1 ` S ) = ( Poly1 ` S ) |
15 |
|
eqid |
|- ( ( Poly1 ` S ) |`s B ) = ( ( Poly1 ` S ) |`s B ) |
16 |
14 4 3 5 9 15
|
ressply1add |
|- ( ( ph /\ ( M e. B /\ N e. B ) ) -> ( M ( +g ` W ) N ) = ( M ( +g ` ( ( Poly1 ` S ) |`s B ) ) N ) ) |
17 |
13 10 11 16
|
syl12anc |
|- ( ph -> ( M ( +g ` W ) N ) = ( M ( +g ` ( ( Poly1 ` S ) |`s B ) ) N ) ) |
18 |
6
|
oveqi |
|- ( M .+^ N ) = ( M ( +g ` W ) N ) |
19 |
5
|
fvexi |
|- B e. _V |
20 |
|
eqid |
|- ( +g ` ( Poly1 ` S ) ) = ( +g ` ( Poly1 ` S ) ) |
21 |
15 20
|
ressplusg |
|- ( B e. _V -> ( +g ` ( Poly1 ` S ) ) = ( +g ` ( ( Poly1 ` S ) |`s B ) ) ) |
22 |
19 21
|
ax-mp |
|- ( +g ` ( Poly1 ` S ) ) = ( +g ` ( ( Poly1 ` S ) |`s B ) ) |
23 |
22
|
oveqi |
|- ( M ( +g ` ( Poly1 ` S ) ) N ) = ( M ( +g ` ( ( Poly1 ` S ) |`s B ) ) N ) |
24 |
17 18 23
|
3eqtr4g |
|- ( ph -> ( M .+^ N ) = ( M ( +g ` ( Poly1 ` S ) ) N ) ) |
25 |
24
|
fveq2d |
|- ( ph -> ( ( eval1 ` S ) ` ( M .+^ N ) ) = ( ( eval1 ` S ) ` ( M ( +g ` ( Poly1 ` S ) ) N ) ) ) |
26 |
25
|
fveq1d |
|- ( ph -> ( ( ( eval1 ` S ) ` ( M .+^ N ) ) ` C ) = ( ( ( eval1 ` S ) ` ( M ( +g ` ( Poly1 ` S ) ) N ) ) ` C ) ) |
27 |
|
eqid |
|- ( eval1 ` S ) = ( eval1 ` S ) |
28 |
1 2 3 4 5 27 8 9
|
ressply1evl |
|- ( ph -> Q = ( ( eval1 ` S ) |` B ) ) |
29 |
28
|
fveq1d |
|- ( ph -> ( Q ` ( M .+^ N ) ) = ( ( ( eval1 ` S ) |` B ) ` ( M .+^ N ) ) ) |
30 |
4
|
subrgring |
|- ( R e. ( SubRing ` S ) -> U e. Ring ) |
31 |
3
|
ply1ring |
|- ( U e. Ring -> W e. Ring ) |
32 |
9 30 31
|
3syl |
|- ( ph -> W e. Ring ) |
33 |
32
|
ringgrpd |
|- ( ph -> W e. Grp ) |
34 |
5 6 33 10 11
|
grpcld |
|- ( ph -> ( M .+^ N ) e. B ) |
35 |
34
|
fvresd |
|- ( ph -> ( ( ( eval1 ` S ) |` B ) ` ( M .+^ N ) ) = ( ( eval1 ` S ) ` ( M .+^ N ) ) ) |
36 |
29 35
|
eqtr2d |
|- ( ph -> ( ( eval1 ` S ) ` ( M .+^ N ) ) = ( Q ` ( M .+^ N ) ) ) |
37 |
36
|
fveq1d |
|- ( ph -> ( ( ( eval1 ` S ) ` ( M .+^ N ) ) ` C ) = ( ( Q ` ( M .+^ N ) ) ` C ) ) |
38 |
|
eqid |
|- ( Base ` ( Poly1 ` S ) ) = ( Base ` ( Poly1 ` S ) ) |
39 |
|
eqid |
|- ( PwSer1 ` U ) = ( PwSer1 ` U ) |
40 |
|
eqid |
|- ( Base ` ( PwSer1 ` U ) ) = ( Base ` ( PwSer1 ` U ) ) |
41 |
14 4 3 5 9 39 40 38
|
ressply1bas2 |
|- ( ph -> B = ( ( Base ` ( PwSer1 ` U ) ) i^i ( Base ` ( Poly1 ` S ) ) ) ) |
42 |
|
inss2 |
|- ( ( Base ` ( PwSer1 ` U ) ) i^i ( Base ` ( Poly1 ` S ) ) ) C_ ( Base ` ( Poly1 ` S ) ) |
43 |
41 42
|
eqsstrdi |
|- ( ph -> B C_ ( Base ` ( Poly1 ` S ) ) ) |
44 |
43 10
|
sseldd |
|- ( ph -> M e. ( Base ` ( Poly1 ` S ) ) ) |
45 |
28
|
fveq1d |
|- ( ph -> ( Q ` M ) = ( ( ( eval1 ` S ) |` B ) ` M ) ) |
46 |
10
|
fvresd |
|- ( ph -> ( ( ( eval1 ` S ) |` B ) ` M ) = ( ( eval1 ` S ) ` M ) ) |
47 |
45 46
|
eqtr2d |
|- ( ph -> ( ( eval1 ` S ) ` M ) = ( Q ` M ) ) |
48 |
47
|
fveq1d |
|- ( ph -> ( ( ( eval1 ` S ) ` M ) ` C ) = ( ( Q ` M ) ` C ) ) |
49 |
44 48
|
jca |
|- ( ph -> ( M e. ( Base ` ( Poly1 ` S ) ) /\ ( ( ( eval1 ` S ) ` M ) ` C ) = ( ( Q ` M ) ` C ) ) ) |
50 |
43 11
|
sseldd |
|- ( ph -> N e. ( Base ` ( Poly1 ` S ) ) ) |
51 |
28
|
fveq1d |
|- ( ph -> ( Q ` N ) = ( ( ( eval1 ` S ) |` B ) ` N ) ) |
52 |
11
|
fvresd |
|- ( ph -> ( ( ( eval1 ` S ) |` B ) ` N ) = ( ( eval1 ` S ) ` N ) ) |
53 |
51 52
|
eqtr2d |
|- ( ph -> ( ( eval1 ` S ) ` N ) = ( Q ` N ) ) |
54 |
53
|
fveq1d |
|- ( ph -> ( ( ( eval1 ` S ) ` N ) ` C ) = ( ( Q ` N ) ` C ) ) |
55 |
50 54
|
jca |
|- ( ph -> ( N e. ( Base ` ( Poly1 ` S ) ) /\ ( ( ( eval1 ` S ) ` N ) ` C ) = ( ( Q ` N ) ` C ) ) ) |
56 |
27 14 2 38 8 12 49 55 20 7
|
evl1addd |
|- ( ph -> ( ( M ( +g ` ( Poly1 ` S ) ) N ) e. ( Base ` ( Poly1 ` S ) ) /\ ( ( ( eval1 ` S ) ` ( M ( +g ` ( Poly1 ` S ) ) N ) ) ` C ) = ( ( ( Q ` M ) ` C ) .+ ( ( Q ` N ) ` C ) ) ) ) |
57 |
56
|
simprd |
|- ( ph -> ( ( ( eval1 ` S ) ` ( M ( +g ` ( Poly1 ` S ) ) N ) ) ` C ) = ( ( ( Q ` M ) ` C ) .+ ( ( Q ` N ) ` C ) ) ) |
58 |
26 37 57
|
3eqtr3d |
|- ( ph -> ( ( Q ` ( M .+^ N ) ) ` C ) = ( ( ( Q ` M ) ` C ) .+ ( ( Q ` N ) ` C ) ) ) |