Metamath Proof Explorer


Theorem evls1addd

Description: Univariate polynomial evaluation of a sum of polynomials. (Contributed by Thierry Arnoux, 8-Feb-2025)

Ref Expression
Hypotheses ressply1evl.q âŠĒ 𝑄 = ( 𝑆 evalSub1 𝑅 )
ressply1evl.k âŠĒ ðū = ( Base ‘ 𝑆 )
ressply1evl.w âŠĒ 𝑊 = ( Poly1 ‘ 𝑈 )
ressply1evl.u âŠĒ 𝑈 = ( 𝑆 â†ūs 𝑅 )
ressply1evl.b âŠĒ ðĩ = ( Base ‘ 𝑊 )
evls1addd.1 âŠĒ âĻĢ = ( +g ‘ 𝑊 )
evls1addd.2 âŠĒ + = ( +g ‘ 𝑆 )
evls1addd.s âŠĒ ( 𝜑 → 𝑆 ∈ CRing )
evls1addd.r âŠĒ ( 𝜑 → 𝑅 ∈ ( SubRing ‘ 𝑆 ) )
evls1addd.m âŠĒ ( 𝜑 → 𝑀 ∈ ðĩ )
evls1addd.n âŠĒ ( 𝜑 → 𝑁 ∈ ðĩ )
evls1addd.y âŠĒ ( 𝜑 → ðķ ∈ ðū )
Assertion evls1addd ( 𝜑 → ( ( 𝑄 ‘ ( 𝑀 âĻĢ ð‘ ) ) ‘ ðķ ) = ( ( ( 𝑄 ‘ 𝑀 ) ‘ ðķ ) + ( ( 𝑄 ‘ 𝑁 ) ‘ ðķ ) ) )

Proof

Step Hyp Ref Expression
1 ressply1evl.q âŠĒ 𝑄 = ( 𝑆 evalSub1 𝑅 )
2 ressply1evl.k âŠĒ ðū = ( Base ‘ 𝑆 )
3 ressply1evl.w âŠĒ 𝑊 = ( Poly1 ‘ 𝑈 )
4 ressply1evl.u âŠĒ 𝑈 = ( 𝑆 â†ūs 𝑅 )
5 ressply1evl.b âŠĒ ðĩ = ( Base ‘ 𝑊 )
6 evls1addd.1 âŠĒ âĻĢ = ( +g ‘ 𝑊 )
7 evls1addd.2 âŠĒ + = ( +g ‘ 𝑆 )
8 evls1addd.s âŠĒ ( 𝜑 → 𝑆 ∈ CRing )
9 evls1addd.r âŠĒ ( 𝜑 → 𝑅 ∈ ( SubRing ‘ 𝑆 ) )
10 evls1addd.m âŠĒ ( 𝜑 → 𝑀 ∈ ðĩ )
11 evls1addd.n âŠĒ ( 𝜑 → 𝑁 ∈ ðĩ )
12 evls1addd.y âŠĒ ( 𝜑 → ðķ ∈ ðū )
13 id âŠĒ ( 𝜑 → 𝜑 )
14 eqid âŠĒ ( Poly1 ‘ 𝑆 ) = ( Poly1 ‘ 𝑆 )
15 eqid âŠĒ ( ( Poly1 ‘ 𝑆 ) â†ūs ðĩ ) = ( ( Poly1 ‘ 𝑆 ) â†ūs ðĩ )
16 14 4 3 5 9 15 ressply1add âŠĒ ( ( 𝜑 ∧ ( 𝑀 ∈ ðĩ ∧ 𝑁 ∈ ðĩ ) ) → ( 𝑀 ( +g ‘ 𝑊 ) 𝑁 ) = ( 𝑀 ( +g ‘ ( ( Poly1 ‘ 𝑆 ) â†ūs ðĩ ) ) 𝑁 ) )
17 13 10 11 16 syl12anc âŠĒ ( 𝜑 → ( 𝑀 ( +g ‘ 𝑊 ) 𝑁 ) = ( 𝑀 ( +g ‘ ( ( Poly1 ‘ 𝑆 ) â†ūs ðĩ ) ) 𝑁 ) )
18 6 oveqi âŠĒ ( 𝑀 âĻĢ ð‘ ) = ( 𝑀 ( +g ‘ 𝑊 ) 𝑁 )
19 5 fvexi âŠĒ ðĩ ∈ V
20 eqid âŠĒ ( +g ‘ ( Poly1 ‘ 𝑆 ) ) = ( +g ‘ ( Poly1 ‘ 𝑆 ) )
21 15 20 ressplusg âŠĒ ( ðĩ ∈ V → ( +g ‘ ( Poly1 ‘ 𝑆 ) ) = ( +g ‘ ( ( Poly1 ‘ 𝑆 ) â†ūs ðĩ ) ) )
22 19 21 ax-mp âŠĒ ( +g ‘ ( Poly1 ‘ 𝑆 ) ) = ( +g ‘ ( ( Poly1 ‘ 𝑆 ) â†ūs ðĩ ) )
23 22 oveqi âŠĒ ( 𝑀 ( +g ‘ ( Poly1 ‘ 𝑆 ) ) 𝑁 ) = ( 𝑀 ( +g ‘ ( ( Poly1 ‘ 𝑆 ) â†ūs ðĩ ) ) 𝑁 )
24 17 18 23 3eqtr4g âŠĒ ( 𝜑 → ( 𝑀 âĻĢ ð‘ ) = ( 𝑀 ( +g ‘ ( Poly1 ‘ 𝑆 ) ) 𝑁 ) )
25 24 fveq2d âŠĒ ( 𝜑 → ( ( eval1 ‘ 𝑆 ) ‘ ( 𝑀 âĻĢ ð‘ ) ) = ( ( eval1 ‘ 𝑆 ) ‘ ( 𝑀 ( +g ‘ ( Poly1 ‘ 𝑆 ) ) 𝑁 ) ) )
26 25 fveq1d âŠĒ ( 𝜑 → ( ( ( eval1 ‘ 𝑆 ) ‘ ( 𝑀 âĻĢ ð‘ ) ) ‘ ðķ ) = ( ( ( eval1 ‘ 𝑆 ) ‘ ( 𝑀 ( +g ‘ ( Poly1 ‘ 𝑆 ) ) 𝑁 ) ) ‘ ðķ ) )
27 eqid âŠĒ ( eval1 ‘ 𝑆 ) = ( eval1 ‘ 𝑆 )
28 1 2 3 4 5 27 8 9 ressply1evl âŠĒ ( 𝜑 → 𝑄 = ( ( eval1 ‘ 𝑆 ) â†ū ðĩ ) )
29 28 fveq1d âŠĒ ( 𝜑 → ( 𝑄 ‘ ( 𝑀 âĻĢ ð‘ ) ) = ( ( ( eval1 ‘ 𝑆 ) â†ū ðĩ ) ‘ ( 𝑀 âĻĢ ð‘ ) ) )
30 4 subrgring âŠĒ ( 𝑅 ∈ ( SubRing ‘ 𝑆 ) → 𝑈 ∈ Ring )
31 3 ply1ring âŠĒ ( 𝑈 ∈ Ring → 𝑊 ∈ Ring )
32 9 30 31 3syl âŠĒ ( 𝜑 → 𝑊 ∈ Ring )
33 32 ringgrpd âŠĒ ( 𝜑 → 𝑊 ∈ Grp )
34 5 6 33 10 11 grpcld âŠĒ ( 𝜑 → ( 𝑀 âĻĢ ð‘ ) ∈ ðĩ )
35 34 fvresd âŠĒ ( 𝜑 → ( ( ( eval1 ‘ 𝑆 ) â†ū ðĩ ) ‘ ( 𝑀 âĻĢ ð‘ ) ) = ( ( eval1 ‘ 𝑆 ) ‘ ( 𝑀 âĻĢ ð‘ ) ) )
36 29 35 eqtr2d âŠĒ ( 𝜑 → ( ( eval1 ‘ 𝑆 ) ‘ ( 𝑀 âĻĢ ð‘ ) ) = ( 𝑄 ‘ ( 𝑀 âĻĢ ð‘ ) ) )
37 36 fveq1d âŠĒ ( 𝜑 → ( ( ( eval1 ‘ 𝑆 ) ‘ ( 𝑀 âĻĢ ð‘ ) ) ‘ ðķ ) = ( ( 𝑄 ‘ ( 𝑀 âĻĢ ð‘ ) ) ‘ ðķ ) )
38 eqid âŠĒ ( Base ‘ ( Poly1 ‘ 𝑆 ) ) = ( Base ‘ ( Poly1 ‘ 𝑆 ) )
39 eqid âŠĒ ( PwSer1 ‘ 𝑈 ) = ( PwSer1 ‘ 𝑈 )
40 eqid âŠĒ ( Base ‘ ( PwSer1 ‘ 𝑈 ) ) = ( Base ‘ ( PwSer1 ‘ 𝑈 ) )
41 14 4 3 5 9 39 40 38 ressply1bas2 âŠĒ ( 𝜑 → ðĩ = ( ( Base ‘ ( PwSer1 ‘ 𝑈 ) ) âˆĐ ( Base ‘ ( Poly1 ‘ 𝑆 ) ) ) )
42 inss2 âŠĒ ( ( Base ‘ ( PwSer1 ‘ 𝑈 ) ) âˆĐ ( Base ‘ ( Poly1 ‘ 𝑆 ) ) ) ⊆ ( Base ‘ ( Poly1 ‘ 𝑆 ) )
43 41 42 eqsstrdi âŠĒ ( 𝜑 → ðĩ ⊆ ( Base ‘ ( Poly1 ‘ 𝑆 ) ) )
44 43 10 sseldd âŠĒ ( 𝜑 → 𝑀 ∈ ( Base ‘ ( Poly1 ‘ 𝑆 ) ) )
45 28 fveq1d âŠĒ ( 𝜑 → ( 𝑄 ‘ 𝑀 ) = ( ( ( eval1 ‘ 𝑆 ) â†ū ðĩ ) ‘ 𝑀 ) )
46 10 fvresd âŠĒ ( 𝜑 → ( ( ( eval1 ‘ 𝑆 ) â†ū ðĩ ) ‘ 𝑀 ) = ( ( eval1 ‘ 𝑆 ) ‘ 𝑀 ) )
47 45 46 eqtr2d âŠĒ ( 𝜑 → ( ( eval1 ‘ 𝑆 ) ‘ 𝑀 ) = ( 𝑄 ‘ 𝑀 ) )
48 47 fveq1d âŠĒ ( 𝜑 → ( ( ( eval1 ‘ 𝑆 ) ‘ 𝑀 ) ‘ ðķ ) = ( ( 𝑄 ‘ 𝑀 ) ‘ ðķ ) )
49 44 48 jca âŠĒ ( 𝜑 → ( 𝑀 ∈ ( Base ‘ ( Poly1 ‘ 𝑆 ) ) ∧ ( ( ( eval1 ‘ 𝑆 ) ‘ 𝑀 ) ‘ ðķ ) = ( ( 𝑄 ‘ 𝑀 ) ‘ ðķ ) ) )
50 43 11 sseldd âŠĒ ( 𝜑 → 𝑁 ∈ ( Base ‘ ( Poly1 ‘ 𝑆 ) ) )
51 28 fveq1d âŠĒ ( 𝜑 → ( 𝑄 ‘ 𝑁 ) = ( ( ( eval1 ‘ 𝑆 ) â†ū ðĩ ) ‘ 𝑁 ) )
52 11 fvresd âŠĒ ( 𝜑 → ( ( ( eval1 ‘ 𝑆 ) â†ū ðĩ ) ‘ 𝑁 ) = ( ( eval1 ‘ 𝑆 ) ‘ 𝑁 ) )
53 51 52 eqtr2d âŠĒ ( 𝜑 → ( ( eval1 ‘ 𝑆 ) ‘ 𝑁 ) = ( 𝑄 ‘ 𝑁 ) )
54 53 fveq1d âŠĒ ( 𝜑 → ( ( ( eval1 ‘ 𝑆 ) ‘ 𝑁 ) ‘ ðķ ) = ( ( 𝑄 ‘ 𝑁 ) ‘ ðķ ) )
55 50 54 jca âŠĒ ( 𝜑 → ( 𝑁 ∈ ( Base ‘ ( Poly1 ‘ 𝑆 ) ) ∧ ( ( ( eval1 ‘ 𝑆 ) ‘ 𝑁 ) ‘ ðķ ) = ( ( 𝑄 ‘ 𝑁 ) ‘ ðķ ) ) )
56 27 14 2 38 8 12 49 55 20 7 evl1addd âŠĒ ( 𝜑 → ( ( 𝑀 ( +g ‘ ( Poly1 ‘ 𝑆 ) ) 𝑁 ) ∈ ( Base ‘ ( Poly1 ‘ 𝑆 ) ) ∧ ( ( ( eval1 ‘ 𝑆 ) ‘ ( 𝑀 ( +g ‘ ( Poly1 ‘ 𝑆 ) ) 𝑁 ) ) ‘ ðķ ) = ( ( ( 𝑄 ‘ 𝑀 ) ‘ ðķ ) + ( ( 𝑄 ‘ 𝑁 ) ‘ ðķ ) ) ) )
57 56 simprd âŠĒ ( 𝜑 → ( ( ( eval1 ‘ 𝑆 ) ‘ ( 𝑀 ( +g ‘ ( Poly1 ‘ 𝑆 ) ) 𝑁 ) ) ‘ ðķ ) = ( ( ( 𝑄 ‘ 𝑀 ) ‘ ðķ ) + ( ( 𝑄 ‘ 𝑁 ) ‘ ðķ ) ) )
58 26 37 57 3eqtr3d âŠĒ ( 𝜑 → ( ( 𝑄 ‘ ( 𝑀 âĻĢ ð‘ ) ) ‘ ðķ ) = ( ( ( 𝑄 ‘ 𝑀 ) ‘ ðķ ) + ( ( 𝑄 ‘ 𝑁 ) ‘ ðķ ) ) )