| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ressply1.s |
⊢ 𝑆 = ( Poly1 ‘ 𝑅 ) |
| 2 |
|
ressply1.h |
⊢ 𝐻 = ( 𝑅 ↾s 𝑇 ) |
| 3 |
|
ressply1.u |
⊢ 𝑈 = ( Poly1 ‘ 𝐻 ) |
| 4 |
|
ressply1.b |
⊢ 𝐵 = ( Base ‘ 𝑈 ) |
| 5 |
|
ressply1.2 |
⊢ ( 𝜑 → 𝑇 ∈ ( SubRing ‘ 𝑅 ) ) |
| 6 |
|
ressply1.p |
⊢ 𝑃 = ( 𝑆 ↾s 𝐵 ) |
| 7 |
|
eqid |
⊢ ( 1o mPoly 𝑅 ) = ( 1o mPoly 𝑅 ) |
| 8 |
|
eqid |
⊢ ( 1o mPoly 𝐻 ) = ( 1o mPoly 𝐻 ) |
| 9 |
3 4
|
ply1bas |
⊢ 𝐵 = ( Base ‘ ( 1o mPoly 𝐻 ) ) |
| 10 |
|
1on |
⊢ 1o ∈ On |
| 11 |
10
|
a1i |
⊢ ( 𝜑 → 1o ∈ On ) |
| 12 |
|
eqid |
⊢ ( ( 1o mPoly 𝑅 ) ↾s 𝐵 ) = ( ( 1o mPoly 𝑅 ) ↾s 𝐵 ) |
| 13 |
7 2 8 9 11 5 12
|
ressmpladd |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( 𝑋 ( +g ‘ ( 1o mPoly 𝐻 ) ) 𝑌 ) = ( 𝑋 ( +g ‘ ( ( 1o mPoly 𝑅 ) ↾s 𝐵 ) ) 𝑌 ) ) |
| 14 |
|
eqid |
⊢ ( +g ‘ 𝑈 ) = ( +g ‘ 𝑈 ) |
| 15 |
3 8 14
|
ply1plusg |
⊢ ( +g ‘ 𝑈 ) = ( +g ‘ ( 1o mPoly 𝐻 ) ) |
| 16 |
15
|
oveqi |
⊢ ( 𝑋 ( +g ‘ 𝑈 ) 𝑌 ) = ( 𝑋 ( +g ‘ ( 1o mPoly 𝐻 ) ) 𝑌 ) |
| 17 |
|
eqid |
⊢ ( +g ‘ 𝑆 ) = ( +g ‘ 𝑆 ) |
| 18 |
1 7 17
|
ply1plusg |
⊢ ( +g ‘ 𝑆 ) = ( +g ‘ ( 1o mPoly 𝑅 ) ) |
| 19 |
4
|
fvexi |
⊢ 𝐵 ∈ V |
| 20 |
6 17
|
ressplusg |
⊢ ( 𝐵 ∈ V → ( +g ‘ 𝑆 ) = ( +g ‘ 𝑃 ) ) |
| 21 |
19 20
|
ax-mp |
⊢ ( +g ‘ 𝑆 ) = ( +g ‘ 𝑃 ) |
| 22 |
|
eqid |
⊢ ( +g ‘ ( 1o mPoly 𝑅 ) ) = ( +g ‘ ( 1o mPoly 𝑅 ) ) |
| 23 |
12 22
|
ressplusg |
⊢ ( 𝐵 ∈ V → ( +g ‘ ( 1o mPoly 𝑅 ) ) = ( +g ‘ ( ( 1o mPoly 𝑅 ) ↾s 𝐵 ) ) ) |
| 24 |
19 23
|
ax-mp |
⊢ ( +g ‘ ( 1o mPoly 𝑅 ) ) = ( +g ‘ ( ( 1o mPoly 𝑅 ) ↾s 𝐵 ) ) |
| 25 |
18 21 24
|
3eqtr3i |
⊢ ( +g ‘ 𝑃 ) = ( +g ‘ ( ( 1o mPoly 𝑅 ) ↾s 𝐵 ) ) |
| 26 |
25
|
oveqi |
⊢ ( 𝑋 ( +g ‘ 𝑃 ) 𝑌 ) = ( 𝑋 ( +g ‘ ( ( 1o mPoly 𝑅 ) ↾s 𝐵 ) ) 𝑌 ) |
| 27 |
13 16 26
|
3eqtr4g |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( 𝑋 ( +g ‘ 𝑈 ) 𝑌 ) = ( 𝑋 ( +g ‘ 𝑃 ) 𝑌 ) ) |