Step |
Hyp |
Ref |
Expression |
1 |
|
coe1ae0.a |
|- A = ( coe1 ` F ) |
2 |
|
coe1ae0.b |
|- B = ( Base ` P ) |
3 |
|
coe1ae0.p |
|- P = ( Poly1 ` R ) |
4 |
|
coe1ae0.z |
|- .0. = ( 0g ` R ) |
5 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
6 |
1 2 3 4 5
|
coe1fsupp |
|- ( F e. B -> A e. { a e. ( ( Base ` R ) ^m NN0 ) | a finSupp .0. } ) |
7 |
|
breq1 |
|- ( a = A -> ( a finSupp .0. <-> A finSupp .0. ) ) |
8 |
7
|
elrab |
|- ( A e. { a e. ( ( Base ` R ) ^m NN0 ) | a finSupp .0. } <-> ( A e. ( ( Base ` R ) ^m NN0 ) /\ A finSupp .0. ) ) |
9 |
4
|
fvexi |
|- .0. e. _V |
10 |
9
|
a1i |
|- ( F e. B -> .0. e. _V ) |
11 |
|
fsuppmapnn0ub |
|- ( ( A e. ( ( Base ` R ) ^m NN0 ) /\ .0. e. _V ) -> ( A finSupp .0. -> E. s e. NN0 A. n e. NN0 ( s < n -> ( A ` n ) = .0. ) ) ) |
12 |
10 11
|
sylan2 |
|- ( ( A e. ( ( Base ` R ) ^m NN0 ) /\ F e. B ) -> ( A finSupp .0. -> E. s e. NN0 A. n e. NN0 ( s < n -> ( A ` n ) = .0. ) ) ) |
13 |
12
|
impancom |
|- ( ( A e. ( ( Base ` R ) ^m NN0 ) /\ A finSupp .0. ) -> ( F e. B -> E. s e. NN0 A. n e. NN0 ( s < n -> ( A ` n ) = .0. ) ) ) |
14 |
8 13
|
sylbi |
|- ( A e. { a e. ( ( Base ` R ) ^m NN0 ) | a finSupp .0. } -> ( F e. B -> E. s e. NN0 A. n e. NN0 ( s < n -> ( A ` n ) = .0. ) ) ) |
15 |
6 14
|
mpcom |
|- ( F e. B -> E. s e. NN0 A. n e. NN0 ( s < n -> ( A ` n ) = .0. ) ) |