| Step |
Hyp |
Ref |
Expression |
| 1 |
|
coe1ae0.a |
⊢ 𝐴 = ( coe1 ‘ 𝐹 ) |
| 2 |
|
coe1ae0.b |
⊢ 𝐵 = ( Base ‘ 𝑃 ) |
| 3 |
|
coe1ae0.p |
⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) |
| 4 |
|
coe1ae0.z |
⊢ 0 = ( 0g ‘ 𝑅 ) |
| 5 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
| 6 |
1 2 3 4 5
|
coe1fsupp |
⊢ ( 𝐹 ∈ 𝐵 → 𝐴 ∈ { 𝑎 ∈ ( ( Base ‘ 𝑅 ) ↑m ℕ0 ) ∣ 𝑎 finSupp 0 } ) |
| 7 |
|
breq1 |
⊢ ( 𝑎 = 𝐴 → ( 𝑎 finSupp 0 ↔ 𝐴 finSupp 0 ) ) |
| 8 |
7
|
elrab |
⊢ ( 𝐴 ∈ { 𝑎 ∈ ( ( Base ‘ 𝑅 ) ↑m ℕ0 ) ∣ 𝑎 finSupp 0 } ↔ ( 𝐴 ∈ ( ( Base ‘ 𝑅 ) ↑m ℕ0 ) ∧ 𝐴 finSupp 0 ) ) |
| 9 |
4
|
fvexi |
⊢ 0 ∈ V |
| 10 |
9
|
a1i |
⊢ ( 𝐹 ∈ 𝐵 → 0 ∈ V ) |
| 11 |
|
fsuppmapnn0ub |
⊢ ( ( 𝐴 ∈ ( ( Base ‘ 𝑅 ) ↑m ℕ0 ) ∧ 0 ∈ V ) → ( 𝐴 finSupp 0 → ∃ 𝑠 ∈ ℕ0 ∀ 𝑛 ∈ ℕ0 ( 𝑠 < 𝑛 → ( 𝐴 ‘ 𝑛 ) = 0 ) ) ) |
| 12 |
10 11
|
sylan2 |
⊢ ( ( 𝐴 ∈ ( ( Base ‘ 𝑅 ) ↑m ℕ0 ) ∧ 𝐹 ∈ 𝐵 ) → ( 𝐴 finSupp 0 → ∃ 𝑠 ∈ ℕ0 ∀ 𝑛 ∈ ℕ0 ( 𝑠 < 𝑛 → ( 𝐴 ‘ 𝑛 ) = 0 ) ) ) |
| 13 |
12
|
impancom |
⊢ ( ( 𝐴 ∈ ( ( Base ‘ 𝑅 ) ↑m ℕ0 ) ∧ 𝐴 finSupp 0 ) → ( 𝐹 ∈ 𝐵 → ∃ 𝑠 ∈ ℕ0 ∀ 𝑛 ∈ ℕ0 ( 𝑠 < 𝑛 → ( 𝐴 ‘ 𝑛 ) = 0 ) ) ) |
| 14 |
8 13
|
sylbi |
⊢ ( 𝐴 ∈ { 𝑎 ∈ ( ( Base ‘ 𝑅 ) ↑m ℕ0 ) ∣ 𝑎 finSupp 0 } → ( 𝐹 ∈ 𝐵 → ∃ 𝑠 ∈ ℕ0 ∀ 𝑛 ∈ ℕ0 ( 𝑠 < 𝑛 → ( 𝐴 ‘ 𝑛 ) = 0 ) ) ) |
| 15 |
6 14
|
mpcom |
⊢ ( 𝐹 ∈ 𝐵 → ∃ 𝑠 ∈ ℕ0 ∀ 𝑛 ∈ ℕ0 ( 𝑠 < 𝑛 → ( 𝐴 ‘ 𝑛 ) = 0 ) ) |