Description: A field is a commutative ring. (Contributed by SN, 23-Nov-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | fldcrngd.1 | |- ( ph -> R e. Field ) |
|
| Assertion | fldcrngd | |- ( ph -> R e. CRing ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fldcrngd.1 | |- ( ph -> R e. Field ) |
|
| 2 | isfld | |- ( R e. Field <-> ( R e. DivRing /\ R e. CRing ) ) |
|
| 3 | 2 | simprbi | |- ( R e. Field -> R e. CRing ) |
| 4 | 1 3 | syl | |- ( ph -> R e. CRing ) |