Step |
Hyp |
Ref |
Expression |
1 |
|
fldgenval.1 |
|- B = ( Base ` F ) |
2 |
|
fldgenval.2 |
|- ( ph -> F e. DivRing ) |
3 |
|
fldgenval.3 |
|- ( ph -> S C_ B ) |
4 |
2
|
elexd |
|- ( ph -> F e. _V ) |
5 |
1
|
fvexi |
|- B e. _V |
6 |
5
|
a1i |
|- ( ph -> B e. _V ) |
7 |
6 3
|
ssexd |
|- ( ph -> S e. _V ) |
8 |
1
|
sdrgid |
|- ( F e. DivRing -> B e. ( SubDRing ` F ) ) |
9 |
2 8
|
syl |
|- ( ph -> B e. ( SubDRing ` F ) ) |
10 |
|
sseq2 |
|- ( a = B -> ( S C_ a <-> S C_ B ) ) |
11 |
10
|
adantl |
|- ( ( ph /\ a = B ) -> ( S C_ a <-> S C_ B ) ) |
12 |
9 11 3
|
rspcedvd |
|- ( ph -> E. a e. ( SubDRing ` F ) S C_ a ) |
13 |
|
intexrab |
|- ( E. a e. ( SubDRing ` F ) S C_ a <-> |^| { a e. ( SubDRing ` F ) | S C_ a } e. _V ) |
14 |
12 13
|
sylib |
|- ( ph -> |^| { a e. ( SubDRing ` F ) | S C_ a } e. _V ) |
15 |
|
simpl |
|- ( ( f = F /\ s = S ) -> f = F ) |
16 |
15
|
fveq2d |
|- ( ( f = F /\ s = S ) -> ( SubDRing ` f ) = ( SubDRing ` F ) ) |
17 |
|
simpr |
|- ( ( f = F /\ s = S ) -> s = S ) |
18 |
17
|
sseq1d |
|- ( ( f = F /\ s = S ) -> ( s C_ a <-> S C_ a ) ) |
19 |
16 18
|
rabeqbidv |
|- ( ( f = F /\ s = S ) -> { a e. ( SubDRing ` f ) | s C_ a } = { a e. ( SubDRing ` F ) | S C_ a } ) |
20 |
19
|
inteqd |
|- ( ( f = F /\ s = S ) -> |^| { a e. ( SubDRing ` f ) | s C_ a } = |^| { a e. ( SubDRing ` F ) | S C_ a } ) |
21 |
|
df-fldgen |
|- fldGen = ( f e. _V , s e. _V |-> |^| { a e. ( SubDRing ` f ) | s C_ a } ) |
22 |
20 21
|
ovmpoga |
|- ( ( F e. _V /\ S e. _V /\ |^| { a e. ( SubDRing ` F ) | S C_ a } e. _V ) -> ( F fldGen S ) = |^| { a e. ( SubDRing ` F ) | S C_ a } ) |
23 |
4 7 14 22
|
syl3anc |
|- ( ph -> ( F fldGen S ) = |^| { a e. ( SubDRing ` F ) | S C_ a } ) |