Description: The field generated by a set of elements contains those elements. See lspssid . (Contributed by Thierry Arnoux, 15-Jan-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fldgenval.1 | |- B = ( Base ` F ) |
|
| fldgenval.2 | |- ( ph -> F e. DivRing ) |
||
| fldgenval.3 | |- ( ph -> S C_ B ) |
||
| Assertion | fldgenssid | |- ( ph -> S C_ ( F fldGen S ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fldgenval.1 | |- B = ( Base ` F ) |
|
| 2 | fldgenval.2 | |- ( ph -> F e. DivRing ) |
|
| 3 | fldgenval.3 | |- ( ph -> S C_ B ) |
|
| 4 | ssintub | |- S C_ |^| { a e. ( SubDRing ` F ) | S C_ a } |
|
| 5 | 1 2 3 | fldgenval | |- ( ph -> ( F fldGen S ) = |^| { a e. ( SubDRing ` F ) | S C_ a } ) |
| 6 | 4 5 | sseqtrrid | |- ( ph -> S C_ ( F fldGen S ) ) |