Metamath Proof Explorer


Theorem fldgenssid

Description: The field generated by a set of elements contains those elements. See lspssid . (Contributed by Thierry Arnoux, 15-Jan-2025)

Ref Expression
Hypotheses fldgenval.1 B = Base F
fldgenval.2 φ F DivRing
fldgenval.3 φ S B
Assertion fldgenssid φ S F fldGen S

Proof

Step Hyp Ref Expression
1 fldgenval.1 B = Base F
2 fldgenval.2 φ F DivRing
3 fldgenval.3 φ S B
4 ssintub S a SubDRing F | S a
5 1 2 3 fldgenval φ F fldGen S = a SubDRing F | S a
6 4 5 sseqtrrid φ S F fldGen S