| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fldgenval.1 |
|
| 2 |
|
fldgenval.2 |
|
| 3 |
|
fldgenval.3 |
|
| 4 |
1 2 3
|
fldgenval |
|
| 5 |
2
|
drngringd |
|
| 6 |
|
eqid |
|
| 7 |
|
sseq2 |
|
| 8 |
7
|
elrab |
|
| 9 |
8
|
biimpi |
|
| 10 |
9
|
adantl |
|
| 11 |
10
|
simpld |
|
| 12 |
|
issdrg |
|
| 13 |
12
|
simp2bi |
|
| 14 |
11 13
|
syl |
|
| 15 |
14
|
ex |
|
| 16 |
15
|
ssrdv |
|
| 17 |
|
sseq2 |
|
| 18 |
1
|
sdrgid |
|
| 19 |
2 18
|
syl |
|
| 20 |
17 19 3
|
elrabd |
|
| 21 |
20
|
ne0d |
|
| 22 |
12
|
simp3bi |
|
| 23 |
11 22
|
syl |
|
| 24 |
6 2 16 21 23
|
subdrgint |
|
| 25 |
24
|
drngringd |
|
| 26 |
|
intss1 |
|
| 27 |
20 26
|
syl |
|
| 28 |
|
issdrg |
|
| 29 |
28
|
simp2bi |
|
| 30 |
|
eqid |
|
| 31 |
30
|
subrg1cl |
|
| 32 |
29 31
|
syl |
|
| 33 |
32
|
ad2antlr |
|
| 34 |
33
|
ex |
|
| 35 |
34
|
ralrimiva |
|
| 36 |
|
fvex |
|
| 37 |
36
|
elintrab |
|
| 38 |
35 37
|
sylibr |
|
| 39 |
1 30
|
issubrg |
|
| 40 |
39
|
biimpri |
|
| 41 |
5 25 27 38 40
|
syl22anc |
|
| 42 |
|
issdrg |
|
| 43 |
2 41 24 42
|
syl3anbrc |
|
| 44 |
4 43
|
eqeltrd |
|