Step |
Hyp |
Ref |
Expression |
1 |
|
subdrgint.1 |
|
2 |
|
subdrgint.2 |
|
3 |
|
subdrgint.3 |
|
4 |
|
subdrgint.4 |
|
5 |
|
subdrgint.5 |
|
6 |
|
subrgint |
|
7 |
3 4 6
|
syl2anc |
|
8 |
1
|
subrgring |
|
9 |
7 8
|
syl |
|
10 |
1
|
fveq2i |
|
11 |
10
|
oveq1i |
|
12 |
|
eqid |
|
13 |
|
eqid |
|
14 |
12 13
|
mgpress |
|
15 |
2 7 14
|
syl2anc |
|
16 |
15
|
oveq1d |
|
17 |
|
difssd |
|
18 |
|
eqid |
|
19 |
18
|
subrgss |
|
20 |
1 18
|
ressbas2 |
|
21 |
7 19 20
|
3syl |
|
22 |
17 21
|
sseqtrrd |
|
23 |
|
ressabs |
|
24 |
7 22 23
|
syl2anc |
|
25 |
16 24
|
eqtr3d |
|
26 |
|
intiin |
|
27 |
21 26
|
eqtr3di |
|
28 |
27
|
difeq1d |
|
29 |
28
|
oveq2d |
|
30 |
|
vex |
|
31 |
30
|
difexi |
|
32 |
31
|
dfiin3 |
|
33 |
|
iindif1 |
|
34 |
4 33
|
syl |
|
35 |
32 34
|
eqtr3id |
|
36 |
35
|
oveq2d |
|
37 |
|
difss |
|
38 |
|
eqid |
|
39 |
13 18
|
mgpbas |
|
40 |
38 39
|
ressbas2 |
|
41 |
37 40
|
ax-mp |
|
42 |
41
|
fvexi |
|
43 |
|
iinssiun |
|
44 |
4 43
|
syl |
|
45 |
|
subrgsubg |
|
46 |
45
|
ssriv |
|
47 |
3 46
|
sstrdi |
|
48 |
|
subgint |
|
49 |
47 4 48
|
syl2anc |
|
50 |
|
eqid |
|
51 |
1 50
|
subg0 |
|
52 |
49 51
|
syl |
|
53 |
52
|
adantr |
|
54 |
53
|
sneqd |
|
55 |
54
|
difeq2d |
|
56 |
3
|
sselda |
|
57 |
18
|
subrgss |
|
58 |
56 57
|
syl |
|
59 |
58
|
ssdifd |
|
60 |
55 59
|
eqsstrrd |
|
61 |
60
|
iunssd |
|
62 |
44 61
|
sstrd |
|
63 |
32 62
|
eqsstrrid |
|
64 |
|
ressabs |
|
65 |
42 63 64
|
sylancr |
|
66 |
18 50 38
|
drngmgp |
|
67 |
2 66
|
syl |
|
68 |
67
|
adantr |
|
69 |
60 41
|
sseqtrdi |
|
70 |
|
ressabs |
|
71 |
42 60 70
|
sylancr |
|
72 |
|
eqid |
|
73 |
72 13
|
mgpress |
|
74 |
2 73
|
sylan |
|
75 |
55
|
eqcomd |
|
76 |
74 75
|
oveq12d |
|
77 |
|
simpr |
|
78 |
|
difssd |
|
79 |
|
ressabs |
|
80 |
77 78 79
|
syl2anc |
|
81 |
76 80
|
eqtr3d |
|
82 |
72 18
|
ressbas2 |
|
83 |
56 57 82
|
3syl |
|
84 |
72 50
|
subrg0 |
|
85 |
56 84
|
syl |
|
86 |
85
|
sneqd |
|
87 |
83 86
|
difeq12d |
|
88 |
87
|
oveq2d |
|
89 |
|
eqid |
|
90 |
|
eqid |
|
91 |
|
eqid |
|
92 |
89 90 91
|
drngmgp |
|
93 |
5 92
|
syl |
|
94 |
88 93
|
eqeltrd |
|
95 |
81 94
|
eqeltrrd |
|
96 |
71 95
|
eqeltrd |
|
97 |
|
eqid |
|
98 |
97
|
issubg |
|
99 |
68 69 96 98
|
syl3anbrc |
|
100 |
99
|
ralrimiva |
|
101 |
|
eqid |
|
102 |
101
|
rnmptss |
|
103 |
100 102
|
syl |
|
104 |
|
dmmptg |
|
105 |
|
difexg |
|
106 |
104 105
|
mprg |
|
107 |
106
|
a1i |
|
108 |
107 4
|
eqnetrd |
|
109 |
|
dm0rn0 |
|
110 |
109
|
necon3bii |
|
111 |
108 110
|
sylib |
|
112 |
|
subgint |
|
113 |
103 111 112
|
syl2anc |
|
114 |
|
eqid |
|
115 |
114
|
subggrp |
|
116 |
113 115
|
syl |
|
117 |
65 116
|
eqeltrrd |
|
118 |
36 117
|
eqeltrrd |
|
119 |
29 118
|
eqeltrd |
|
120 |
25 119
|
eqeltrd |
|
121 |
11 120
|
eqeltrid |
|
122 |
|
eqid |
|
123 |
|
eqid |
|
124 |
|
eqid |
|
125 |
122 123 124
|
isdrng2 |
|
126 |
9 121 125
|
sylanbrc |
|