| Step | Hyp | Ref | Expression | 
						
							| 1 |  | subdrgint.1 |  | 
						
							| 2 |  | subdrgint.2 |  | 
						
							| 3 |  | subdrgint.3 |  | 
						
							| 4 |  | subdrgint.4 |  | 
						
							| 5 |  | subdrgint.5 |  | 
						
							| 6 |  | subrgint |  | 
						
							| 7 | 3 4 6 | syl2anc |  | 
						
							| 8 | 1 | subrgring |  | 
						
							| 9 | 7 8 | syl |  | 
						
							| 10 | 1 | fveq2i |  | 
						
							| 11 | 10 | oveq1i |  | 
						
							| 12 |  | eqid |  | 
						
							| 13 |  | eqid |  | 
						
							| 14 | 12 13 | mgpress |  | 
						
							| 15 | 2 7 14 | syl2anc |  | 
						
							| 16 | 15 | oveq1d |  | 
						
							| 17 |  | difssd |  | 
						
							| 18 |  | eqid |  | 
						
							| 19 | 18 | subrgss |  | 
						
							| 20 | 1 18 | ressbas2 |  | 
						
							| 21 | 7 19 20 | 3syl |  | 
						
							| 22 | 17 21 | sseqtrrd |  | 
						
							| 23 |  | ressabs |  | 
						
							| 24 | 7 22 23 | syl2anc |  | 
						
							| 25 | 16 24 | eqtr3d |  | 
						
							| 26 |  | intiin |  | 
						
							| 27 | 21 26 | eqtr3di |  | 
						
							| 28 | 27 | difeq1d |  | 
						
							| 29 | 28 | oveq2d |  | 
						
							| 30 |  | vex |  | 
						
							| 31 | 30 | difexi |  | 
						
							| 32 | 31 | dfiin3 |  | 
						
							| 33 |  | iindif1 |  | 
						
							| 34 | 4 33 | syl |  | 
						
							| 35 | 32 34 | eqtr3id |  | 
						
							| 36 | 35 | oveq2d |  | 
						
							| 37 |  | difss |  | 
						
							| 38 |  | eqid |  | 
						
							| 39 | 13 18 | mgpbas |  | 
						
							| 40 | 38 39 | ressbas2 |  | 
						
							| 41 | 37 40 | ax-mp |  | 
						
							| 42 | 41 | fvexi |  | 
						
							| 43 |  | iinssiun |  | 
						
							| 44 | 4 43 | syl |  | 
						
							| 45 |  | subrgsubg |  | 
						
							| 46 | 45 | ssriv |  | 
						
							| 47 | 3 46 | sstrdi |  | 
						
							| 48 |  | subgint |  | 
						
							| 49 | 47 4 48 | syl2anc |  | 
						
							| 50 |  | eqid |  | 
						
							| 51 | 1 50 | subg0 |  | 
						
							| 52 | 49 51 | syl |  | 
						
							| 53 | 52 | adantr |  | 
						
							| 54 | 53 | sneqd |  | 
						
							| 55 | 54 | difeq2d |  | 
						
							| 56 | 3 | sselda |  | 
						
							| 57 | 18 | subrgss |  | 
						
							| 58 | 56 57 | syl |  | 
						
							| 59 | 58 | ssdifd |  | 
						
							| 60 | 55 59 | eqsstrrd |  | 
						
							| 61 | 60 | iunssd |  | 
						
							| 62 | 44 61 | sstrd |  | 
						
							| 63 | 32 62 | eqsstrrid |  | 
						
							| 64 |  | ressabs |  | 
						
							| 65 | 42 63 64 | sylancr |  | 
						
							| 66 | 18 50 38 | drngmgp |  | 
						
							| 67 | 2 66 | syl |  | 
						
							| 68 | 67 | adantr |  | 
						
							| 69 | 60 41 | sseqtrdi |  | 
						
							| 70 |  | ressabs |  | 
						
							| 71 | 42 60 70 | sylancr |  | 
						
							| 72 |  | eqid |  | 
						
							| 73 | 72 13 | mgpress |  | 
						
							| 74 | 2 73 | sylan |  | 
						
							| 75 | 55 | eqcomd |  | 
						
							| 76 | 74 75 | oveq12d |  | 
						
							| 77 |  | simpr |  | 
						
							| 78 |  | difssd |  | 
						
							| 79 |  | ressabs |  | 
						
							| 80 | 77 78 79 | syl2anc |  | 
						
							| 81 | 76 80 | eqtr3d |  | 
						
							| 82 | 72 18 | ressbas2 |  | 
						
							| 83 | 56 57 82 | 3syl |  | 
						
							| 84 | 72 50 | subrg0 |  | 
						
							| 85 | 56 84 | syl |  | 
						
							| 86 | 85 | sneqd |  | 
						
							| 87 | 83 86 | difeq12d |  | 
						
							| 88 | 87 | oveq2d |  | 
						
							| 89 |  | eqid |  | 
						
							| 90 |  | eqid |  | 
						
							| 91 |  | eqid |  | 
						
							| 92 | 89 90 91 | drngmgp |  | 
						
							| 93 | 5 92 | syl |  | 
						
							| 94 | 88 93 | eqeltrd |  | 
						
							| 95 | 81 94 | eqeltrrd |  | 
						
							| 96 | 71 95 | eqeltrd |  | 
						
							| 97 |  | eqid |  | 
						
							| 98 | 97 | issubg |  | 
						
							| 99 | 68 69 96 98 | syl3anbrc |  | 
						
							| 100 | 99 | ralrimiva |  | 
						
							| 101 |  | eqid |  | 
						
							| 102 | 101 | rnmptss |  | 
						
							| 103 | 100 102 | syl |  | 
						
							| 104 |  | dmmptg |  | 
						
							| 105 |  | difexg |  | 
						
							| 106 | 104 105 | mprg |  | 
						
							| 107 | 106 | a1i |  | 
						
							| 108 | 107 4 | eqnetrd |  | 
						
							| 109 |  | dm0rn0 |  | 
						
							| 110 | 109 | necon3bii |  | 
						
							| 111 | 108 110 | sylib |  | 
						
							| 112 |  | subgint |  | 
						
							| 113 | 103 111 112 | syl2anc |  | 
						
							| 114 |  | eqid |  | 
						
							| 115 | 114 | subggrp |  | 
						
							| 116 | 113 115 | syl |  | 
						
							| 117 | 65 116 | eqeltrrd |  | 
						
							| 118 | 36 117 | eqeltrrd |  | 
						
							| 119 | 29 118 | eqeltrd |  | 
						
							| 120 | 25 119 | eqeltrd |  | 
						
							| 121 | 11 120 | eqeltrid |  | 
						
							| 122 |  | eqid |  | 
						
							| 123 |  | eqid |  | 
						
							| 124 |  | eqid |  | 
						
							| 125 | 122 123 124 | isdrng2 |  | 
						
							| 126 | 9 121 125 | sylanbrc |  |