| Step |
Hyp |
Ref |
Expression |
| 1 |
|
subdrgint.1 |
|- L = ( R |`s |^| S ) |
| 2 |
|
subdrgint.2 |
|- ( ph -> R e. DivRing ) |
| 3 |
|
subdrgint.3 |
|- ( ph -> S C_ ( SubRing ` R ) ) |
| 4 |
|
subdrgint.4 |
|- ( ph -> S =/= (/) ) |
| 5 |
|
subdrgint.5 |
|- ( ( ph /\ s e. S ) -> ( R |`s s ) e. DivRing ) |
| 6 |
|
subrgint |
|- ( ( S C_ ( SubRing ` R ) /\ S =/= (/) ) -> |^| S e. ( SubRing ` R ) ) |
| 7 |
3 4 6
|
syl2anc |
|- ( ph -> |^| S e. ( SubRing ` R ) ) |
| 8 |
1
|
subrgring |
|- ( |^| S e. ( SubRing ` R ) -> L e. Ring ) |
| 9 |
7 8
|
syl |
|- ( ph -> L e. Ring ) |
| 10 |
1
|
fveq2i |
|- ( mulGrp ` L ) = ( mulGrp ` ( R |`s |^| S ) ) |
| 11 |
10
|
oveq1i |
|- ( ( mulGrp ` L ) |`s ( ( Base ` L ) \ { ( 0g ` L ) } ) ) = ( ( mulGrp ` ( R |`s |^| S ) ) |`s ( ( Base ` L ) \ { ( 0g ` L ) } ) ) |
| 12 |
|
eqid |
|- ( R |`s |^| S ) = ( R |`s |^| S ) |
| 13 |
|
eqid |
|- ( mulGrp ` R ) = ( mulGrp ` R ) |
| 14 |
12 13
|
mgpress |
|- ( ( R e. DivRing /\ |^| S e. ( SubRing ` R ) ) -> ( ( mulGrp ` R ) |`s |^| S ) = ( mulGrp ` ( R |`s |^| S ) ) ) |
| 15 |
2 7 14
|
syl2anc |
|- ( ph -> ( ( mulGrp ` R ) |`s |^| S ) = ( mulGrp ` ( R |`s |^| S ) ) ) |
| 16 |
15
|
oveq1d |
|- ( ph -> ( ( ( mulGrp ` R ) |`s |^| S ) |`s ( ( Base ` L ) \ { ( 0g ` L ) } ) ) = ( ( mulGrp ` ( R |`s |^| S ) ) |`s ( ( Base ` L ) \ { ( 0g ` L ) } ) ) ) |
| 17 |
|
difssd |
|- ( ph -> ( ( Base ` L ) \ { ( 0g ` L ) } ) C_ ( Base ` L ) ) |
| 18 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
| 19 |
18
|
subrgss |
|- ( |^| S e. ( SubRing ` R ) -> |^| S C_ ( Base ` R ) ) |
| 20 |
1 18
|
ressbas2 |
|- ( |^| S C_ ( Base ` R ) -> |^| S = ( Base ` L ) ) |
| 21 |
7 19 20
|
3syl |
|- ( ph -> |^| S = ( Base ` L ) ) |
| 22 |
17 21
|
sseqtrrd |
|- ( ph -> ( ( Base ` L ) \ { ( 0g ` L ) } ) C_ |^| S ) |
| 23 |
|
ressabs |
|- ( ( |^| S e. ( SubRing ` R ) /\ ( ( Base ` L ) \ { ( 0g ` L ) } ) C_ |^| S ) -> ( ( ( mulGrp ` R ) |`s |^| S ) |`s ( ( Base ` L ) \ { ( 0g ` L ) } ) ) = ( ( mulGrp ` R ) |`s ( ( Base ` L ) \ { ( 0g ` L ) } ) ) ) |
| 24 |
7 22 23
|
syl2anc |
|- ( ph -> ( ( ( mulGrp ` R ) |`s |^| S ) |`s ( ( Base ` L ) \ { ( 0g ` L ) } ) ) = ( ( mulGrp ` R ) |`s ( ( Base ` L ) \ { ( 0g ` L ) } ) ) ) |
| 25 |
16 24
|
eqtr3d |
|- ( ph -> ( ( mulGrp ` ( R |`s |^| S ) ) |`s ( ( Base ` L ) \ { ( 0g ` L ) } ) ) = ( ( mulGrp ` R ) |`s ( ( Base ` L ) \ { ( 0g ` L ) } ) ) ) |
| 26 |
|
intiin |
|- |^| S = |^|_ s e. S s |
| 27 |
21 26
|
eqtr3di |
|- ( ph -> ( Base ` L ) = |^|_ s e. S s ) |
| 28 |
27
|
difeq1d |
|- ( ph -> ( ( Base ` L ) \ { ( 0g ` L ) } ) = ( |^|_ s e. S s \ { ( 0g ` L ) } ) ) |
| 29 |
28
|
oveq2d |
|- ( ph -> ( ( mulGrp ` R ) |`s ( ( Base ` L ) \ { ( 0g ` L ) } ) ) = ( ( mulGrp ` R ) |`s ( |^|_ s e. S s \ { ( 0g ` L ) } ) ) ) |
| 30 |
|
vex |
|- s e. _V |
| 31 |
30
|
difexi |
|- ( s \ { ( 0g ` L ) } ) e. _V |
| 32 |
31
|
dfiin3 |
|- |^|_ s e. S ( s \ { ( 0g ` L ) } ) = |^| ran ( s e. S |-> ( s \ { ( 0g ` L ) } ) ) |
| 33 |
|
iindif1 |
|- ( S =/= (/) -> |^|_ s e. S ( s \ { ( 0g ` L ) } ) = ( |^|_ s e. S s \ { ( 0g ` L ) } ) ) |
| 34 |
4 33
|
syl |
|- ( ph -> |^|_ s e. S ( s \ { ( 0g ` L ) } ) = ( |^|_ s e. S s \ { ( 0g ` L ) } ) ) |
| 35 |
32 34
|
eqtr3id |
|- ( ph -> |^| ran ( s e. S |-> ( s \ { ( 0g ` L ) } ) ) = ( |^|_ s e. S s \ { ( 0g ` L ) } ) ) |
| 36 |
35
|
oveq2d |
|- ( ph -> ( ( mulGrp ` R ) |`s |^| ran ( s e. S |-> ( s \ { ( 0g ` L ) } ) ) ) = ( ( mulGrp ` R ) |`s ( |^|_ s e. S s \ { ( 0g ` L ) } ) ) ) |
| 37 |
|
difss |
|- ( ( Base ` R ) \ { ( 0g ` R ) } ) C_ ( Base ` R ) |
| 38 |
|
eqid |
|- ( ( mulGrp ` R ) |`s ( ( Base ` R ) \ { ( 0g ` R ) } ) ) = ( ( mulGrp ` R ) |`s ( ( Base ` R ) \ { ( 0g ` R ) } ) ) |
| 39 |
13 18
|
mgpbas |
|- ( Base ` R ) = ( Base ` ( mulGrp ` R ) ) |
| 40 |
38 39
|
ressbas2 |
|- ( ( ( Base ` R ) \ { ( 0g ` R ) } ) C_ ( Base ` R ) -> ( ( Base ` R ) \ { ( 0g ` R ) } ) = ( Base ` ( ( mulGrp ` R ) |`s ( ( Base ` R ) \ { ( 0g ` R ) } ) ) ) ) |
| 41 |
37 40
|
ax-mp |
|- ( ( Base ` R ) \ { ( 0g ` R ) } ) = ( Base ` ( ( mulGrp ` R ) |`s ( ( Base ` R ) \ { ( 0g ` R ) } ) ) ) |
| 42 |
41
|
fvexi |
|- ( ( Base ` R ) \ { ( 0g ` R ) } ) e. _V |
| 43 |
|
iinssiun |
|- ( S =/= (/) -> |^|_ s e. S ( s \ { ( 0g ` L ) } ) C_ U_ s e. S ( s \ { ( 0g ` L ) } ) ) |
| 44 |
4 43
|
syl |
|- ( ph -> |^|_ s e. S ( s \ { ( 0g ` L ) } ) C_ U_ s e. S ( s \ { ( 0g ` L ) } ) ) |
| 45 |
|
subrgsubg |
|- ( s e. ( SubRing ` R ) -> s e. ( SubGrp ` R ) ) |
| 46 |
45
|
ssriv |
|- ( SubRing ` R ) C_ ( SubGrp ` R ) |
| 47 |
3 46
|
sstrdi |
|- ( ph -> S C_ ( SubGrp ` R ) ) |
| 48 |
|
subgint |
|- ( ( S C_ ( SubGrp ` R ) /\ S =/= (/) ) -> |^| S e. ( SubGrp ` R ) ) |
| 49 |
47 4 48
|
syl2anc |
|- ( ph -> |^| S e. ( SubGrp ` R ) ) |
| 50 |
|
eqid |
|- ( 0g ` R ) = ( 0g ` R ) |
| 51 |
1 50
|
subg0 |
|- ( |^| S e. ( SubGrp ` R ) -> ( 0g ` R ) = ( 0g ` L ) ) |
| 52 |
49 51
|
syl |
|- ( ph -> ( 0g ` R ) = ( 0g ` L ) ) |
| 53 |
52
|
adantr |
|- ( ( ph /\ s e. S ) -> ( 0g ` R ) = ( 0g ` L ) ) |
| 54 |
53
|
sneqd |
|- ( ( ph /\ s e. S ) -> { ( 0g ` R ) } = { ( 0g ` L ) } ) |
| 55 |
54
|
difeq2d |
|- ( ( ph /\ s e. S ) -> ( s \ { ( 0g ` R ) } ) = ( s \ { ( 0g ` L ) } ) ) |
| 56 |
3
|
sselda |
|- ( ( ph /\ s e. S ) -> s e. ( SubRing ` R ) ) |
| 57 |
18
|
subrgss |
|- ( s e. ( SubRing ` R ) -> s C_ ( Base ` R ) ) |
| 58 |
56 57
|
syl |
|- ( ( ph /\ s e. S ) -> s C_ ( Base ` R ) ) |
| 59 |
58
|
ssdifd |
|- ( ( ph /\ s e. S ) -> ( s \ { ( 0g ` R ) } ) C_ ( ( Base ` R ) \ { ( 0g ` R ) } ) ) |
| 60 |
55 59
|
eqsstrrd |
|- ( ( ph /\ s e. S ) -> ( s \ { ( 0g ` L ) } ) C_ ( ( Base ` R ) \ { ( 0g ` R ) } ) ) |
| 61 |
60
|
iunssd |
|- ( ph -> U_ s e. S ( s \ { ( 0g ` L ) } ) C_ ( ( Base ` R ) \ { ( 0g ` R ) } ) ) |
| 62 |
44 61
|
sstrd |
|- ( ph -> |^|_ s e. S ( s \ { ( 0g ` L ) } ) C_ ( ( Base ` R ) \ { ( 0g ` R ) } ) ) |
| 63 |
32 62
|
eqsstrrid |
|- ( ph -> |^| ran ( s e. S |-> ( s \ { ( 0g ` L ) } ) ) C_ ( ( Base ` R ) \ { ( 0g ` R ) } ) ) |
| 64 |
|
ressabs |
|- ( ( ( ( Base ` R ) \ { ( 0g ` R ) } ) e. _V /\ |^| ran ( s e. S |-> ( s \ { ( 0g ` L ) } ) ) C_ ( ( Base ` R ) \ { ( 0g ` R ) } ) ) -> ( ( ( mulGrp ` R ) |`s ( ( Base ` R ) \ { ( 0g ` R ) } ) ) |`s |^| ran ( s e. S |-> ( s \ { ( 0g ` L ) } ) ) ) = ( ( mulGrp ` R ) |`s |^| ran ( s e. S |-> ( s \ { ( 0g ` L ) } ) ) ) ) |
| 65 |
42 63 64
|
sylancr |
|- ( ph -> ( ( ( mulGrp ` R ) |`s ( ( Base ` R ) \ { ( 0g ` R ) } ) ) |`s |^| ran ( s e. S |-> ( s \ { ( 0g ` L ) } ) ) ) = ( ( mulGrp ` R ) |`s |^| ran ( s e. S |-> ( s \ { ( 0g ` L ) } ) ) ) ) |
| 66 |
18 50 38
|
drngmgp |
|- ( R e. DivRing -> ( ( mulGrp ` R ) |`s ( ( Base ` R ) \ { ( 0g ` R ) } ) ) e. Grp ) |
| 67 |
2 66
|
syl |
|- ( ph -> ( ( mulGrp ` R ) |`s ( ( Base ` R ) \ { ( 0g ` R ) } ) ) e. Grp ) |
| 68 |
67
|
adantr |
|- ( ( ph /\ s e. S ) -> ( ( mulGrp ` R ) |`s ( ( Base ` R ) \ { ( 0g ` R ) } ) ) e. Grp ) |
| 69 |
60 41
|
sseqtrdi |
|- ( ( ph /\ s e. S ) -> ( s \ { ( 0g ` L ) } ) C_ ( Base ` ( ( mulGrp ` R ) |`s ( ( Base ` R ) \ { ( 0g ` R ) } ) ) ) ) |
| 70 |
|
ressabs |
|- ( ( ( ( Base ` R ) \ { ( 0g ` R ) } ) e. _V /\ ( s \ { ( 0g ` L ) } ) C_ ( ( Base ` R ) \ { ( 0g ` R ) } ) ) -> ( ( ( mulGrp ` R ) |`s ( ( Base ` R ) \ { ( 0g ` R ) } ) ) |`s ( s \ { ( 0g ` L ) } ) ) = ( ( mulGrp ` R ) |`s ( s \ { ( 0g ` L ) } ) ) ) |
| 71 |
42 60 70
|
sylancr |
|- ( ( ph /\ s e. S ) -> ( ( ( mulGrp ` R ) |`s ( ( Base ` R ) \ { ( 0g ` R ) } ) ) |`s ( s \ { ( 0g ` L ) } ) ) = ( ( mulGrp ` R ) |`s ( s \ { ( 0g ` L ) } ) ) ) |
| 72 |
|
eqid |
|- ( R |`s s ) = ( R |`s s ) |
| 73 |
72 13
|
mgpress |
|- ( ( R e. DivRing /\ s e. S ) -> ( ( mulGrp ` R ) |`s s ) = ( mulGrp ` ( R |`s s ) ) ) |
| 74 |
2 73
|
sylan |
|- ( ( ph /\ s e. S ) -> ( ( mulGrp ` R ) |`s s ) = ( mulGrp ` ( R |`s s ) ) ) |
| 75 |
55
|
eqcomd |
|- ( ( ph /\ s e. S ) -> ( s \ { ( 0g ` L ) } ) = ( s \ { ( 0g ` R ) } ) ) |
| 76 |
74 75
|
oveq12d |
|- ( ( ph /\ s e. S ) -> ( ( ( mulGrp ` R ) |`s s ) |`s ( s \ { ( 0g ` L ) } ) ) = ( ( mulGrp ` ( R |`s s ) ) |`s ( s \ { ( 0g ` R ) } ) ) ) |
| 77 |
|
simpr |
|- ( ( ph /\ s e. S ) -> s e. S ) |
| 78 |
|
difssd |
|- ( ( ph /\ s e. S ) -> ( s \ { ( 0g ` L ) } ) C_ s ) |
| 79 |
|
ressabs |
|- ( ( s e. S /\ ( s \ { ( 0g ` L ) } ) C_ s ) -> ( ( ( mulGrp ` R ) |`s s ) |`s ( s \ { ( 0g ` L ) } ) ) = ( ( mulGrp ` R ) |`s ( s \ { ( 0g ` L ) } ) ) ) |
| 80 |
77 78 79
|
syl2anc |
|- ( ( ph /\ s e. S ) -> ( ( ( mulGrp ` R ) |`s s ) |`s ( s \ { ( 0g ` L ) } ) ) = ( ( mulGrp ` R ) |`s ( s \ { ( 0g ` L ) } ) ) ) |
| 81 |
76 80
|
eqtr3d |
|- ( ( ph /\ s e. S ) -> ( ( mulGrp ` ( R |`s s ) ) |`s ( s \ { ( 0g ` R ) } ) ) = ( ( mulGrp ` R ) |`s ( s \ { ( 0g ` L ) } ) ) ) |
| 82 |
72 18
|
ressbas2 |
|- ( s C_ ( Base ` R ) -> s = ( Base ` ( R |`s s ) ) ) |
| 83 |
56 57 82
|
3syl |
|- ( ( ph /\ s e. S ) -> s = ( Base ` ( R |`s s ) ) ) |
| 84 |
72 50
|
subrg0 |
|- ( s e. ( SubRing ` R ) -> ( 0g ` R ) = ( 0g ` ( R |`s s ) ) ) |
| 85 |
56 84
|
syl |
|- ( ( ph /\ s e. S ) -> ( 0g ` R ) = ( 0g ` ( R |`s s ) ) ) |
| 86 |
85
|
sneqd |
|- ( ( ph /\ s e. S ) -> { ( 0g ` R ) } = { ( 0g ` ( R |`s s ) ) } ) |
| 87 |
83 86
|
difeq12d |
|- ( ( ph /\ s e. S ) -> ( s \ { ( 0g ` R ) } ) = ( ( Base ` ( R |`s s ) ) \ { ( 0g ` ( R |`s s ) ) } ) ) |
| 88 |
87
|
oveq2d |
|- ( ( ph /\ s e. S ) -> ( ( mulGrp ` ( R |`s s ) ) |`s ( s \ { ( 0g ` R ) } ) ) = ( ( mulGrp ` ( R |`s s ) ) |`s ( ( Base ` ( R |`s s ) ) \ { ( 0g ` ( R |`s s ) ) } ) ) ) |
| 89 |
|
eqid |
|- ( Base ` ( R |`s s ) ) = ( Base ` ( R |`s s ) ) |
| 90 |
|
eqid |
|- ( 0g ` ( R |`s s ) ) = ( 0g ` ( R |`s s ) ) |
| 91 |
|
eqid |
|- ( ( mulGrp ` ( R |`s s ) ) |`s ( ( Base ` ( R |`s s ) ) \ { ( 0g ` ( R |`s s ) ) } ) ) = ( ( mulGrp ` ( R |`s s ) ) |`s ( ( Base ` ( R |`s s ) ) \ { ( 0g ` ( R |`s s ) ) } ) ) |
| 92 |
89 90 91
|
drngmgp |
|- ( ( R |`s s ) e. DivRing -> ( ( mulGrp ` ( R |`s s ) ) |`s ( ( Base ` ( R |`s s ) ) \ { ( 0g ` ( R |`s s ) ) } ) ) e. Grp ) |
| 93 |
5 92
|
syl |
|- ( ( ph /\ s e. S ) -> ( ( mulGrp ` ( R |`s s ) ) |`s ( ( Base ` ( R |`s s ) ) \ { ( 0g ` ( R |`s s ) ) } ) ) e. Grp ) |
| 94 |
88 93
|
eqeltrd |
|- ( ( ph /\ s e. S ) -> ( ( mulGrp ` ( R |`s s ) ) |`s ( s \ { ( 0g ` R ) } ) ) e. Grp ) |
| 95 |
81 94
|
eqeltrrd |
|- ( ( ph /\ s e. S ) -> ( ( mulGrp ` R ) |`s ( s \ { ( 0g ` L ) } ) ) e. Grp ) |
| 96 |
71 95
|
eqeltrd |
|- ( ( ph /\ s e. S ) -> ( ( ( mulGrp ` R ) |`s ( ( Base ` R ) \ { ( 0g ` R ) } ) ) |`s ( s \ { ( 0g ` L ) } ) ) e. Grp ) |
| 97 |
|
eqid |
|- ( Base ` ( ( mulGrp ` R ) |`s ( ( Base ` R ) \ { ( 0g ` R ) } ) ) ) = ( Base ` ( ( mulGrp ` R ) |`s ( ( Base ` R ) \ { ( 0g ` R ) } ) ) ) |
| 98 |
97
|
issubg |
|- ( ( s \ { ( 0g ` L ) } ) e. ( SubGrp ` ( ( mulGrp ` R ) |`s ( ( Base ` R ) \ { ( 0g ` R ) } ) ) ) <-> ( ( ( mulGrp ` R ) |`s ( ( Base ` R ) \ { ( 0g ` R ) } ) ) e. Grp /\ ( s \ { ( 0g ` L ) } ) C_ ( Base ` ( ( mulGrp ` R ) |`s ( ( Base ` R ) \ { ( 0g ` R ) } ) ) ) /\ ( ( ( mulGrp ` R ) |`s ( ( Base ` R ) \ { ( 0g ` R ) } ) ) |`s ( s \ { ( 0g ` L ) } ) ) e. Grp ) ) |
| 99 |
68 69 96 98
|
syl3anbrc |
|- ( ( ph /\ s e. S ) -> ( s \ { ( 0g ` L ) } ) e. ( SubGrp ` ( ( mulGrp ` R ) |`s ( ( Base ` R ) \ { ( 0g ` R ) } ) ) ) ) |
| 100 |
99
|
ralrimiva |
|- ( ph -> A. s e. S ( s \ { ( 0g ` L ) } ) e. ( SubGrp ` ( ( mulGrp ` R ) |`s ( ( Base ` R ) \ { ( 0g ` R ) } ) ) ) ) |
| 101 |
|
eqid |
|- ( s e. S |-> ( s \ { ( 0g ` L ) } ) ) = ( s e. S |-> ( s \ { ( 0g ` L ) } ) ) |
| 102 |
101
|
rnmptss |
|- ( A. s e. S ( s \ { ( 0g ` L ) } ) e. ( SubGrp ` ( ( mulGrp ` R ) |`s ( ( Base ` R ) \ { ( 0g ` R ) } ) ) ) -> ran ( s e. S |-> ( s \ { ( 0g ` L ) } ) ) C_ ( SubGrp ` ( ( mulGrp ` R ) |`s ( ( Base ` R ) \ { ( 0g ` R ) } ) ) ) ) |
| 103 |
100 102
|
syl |
|- ( ph -> ran ( s e. S |-> ( s \ { ( 0g ` L ) } ) ) C_ ( SubGrp ` ( ( mulGrp ` R ) |`s ( ( Base ` R ) \ { ( 0g ` R ) } ) ) ) ) |
| 104 |
|
dmmptg |
|- ( A. s e. S ( s \ { ( 0g ` L ) } ) e. _V -> dom ( s e. S |-> ( s \ { ( 0g ` L ) } ) ) = S ) |
| 105 |
|
difexg |
|- ( s e. S -> ( s \ { ( 0g ` L ) } ) e. _V ) |
| 106 |
104 105
|
mprg |
|- dom ( s e. S |-> ( s \ { ( 0g ` L ) } ) ) = S |
| 107 |
106
|
a1i |
|- ( ph -> dom ( s e. S |-> ( s \ { ( 0g ` L ) } ) ) = S ) |
| 108 |
107 4
|
eqnetrd |
|- ( ph -> dom ( s e. S |-> ( s \ { ( 0g ` L ) } ) ) =/= (/) ) |
| 109 |
|
dm0rn0 |
|- ( dom ( s e. S |-> ( s \ { ( 0g ` L ) } ) ) = (/) <-> ran ( s e. S |-> ( s \ { ( 0g ` L ) } ) ) = (/) ) |
| 110 |
109
|
necon3bii |
|- ( dom ( s e. S |-> ( s \ { ( 0g ` L ) } ) ) =/= (/) <-> ran ( s e. S |-> ( s \ { ( 0g ` L ) } ) ) =/= (/) ) |
| 111 |
108 110
|
sylib |
|- ( ph -> ran ( s e. S |-> ( s \ { ( 0g ` L ) } ) ) =/= (/) ) |
| 112 |
|
subgint |
|- ( ( ran ( s e. S |-> ( s \ { ( 0g ` L ) } ) ) C_ ( SubGrp ` ( ( mulGrp ` R ) |`s ( ( Base ` R ) \ { ( 0g ` R ) } ) ) ) /\ ran ( s e. S |-> ( s \ { ( 0g ` L ) } ) ) =/= (/) ) -> |^| ran ( s e. S |-> ( s \ { ( 0g ` L ) } ) ) e. ( SubGrp ` ( ( mulGrp ` R ) |`s ( ( Base ` R ) \ { ( 0g ` R ) } ) ) ) ) |
| 113 |
103 111 112
|
syl2anc |
|- ( ph -> |^| ran ( s e. S |-> ( s \ { ( 0g ` L ) } ) ) e. ( SubGrp ` ( ( mulGrp ` R ) |`s ( ( Base ` R ) \ { ( 0g ` R ) } ) ) ) ) |
| 114 |
|
eqid |
|- ( ( ( mulGrp ` R ) |`s ( ( Base ` R ) \ { ( 0g ` R ) } ) ) |`s |^| ran ( s e. S |-> ( s \ { ( 0g ` L ) } ) ) ) = ( ( ( mulGrp ` R ) |`s ( ( Base ` R ) \ { ( 0g ` R ) } ) ) |`s |^| ran ( s e. S |-> ( s \ { ( 0g ` L ) } ) ) ) |
| 115 |
114
|
subggrp |
|- ( |^| ran ( s e. S |-> ( s \ { ( 0g ` L ) } ) ) e. ( SubGrp ` ( ( mulGrp ` R ) |`s ( ( Base ` R ) \ { ( 0g ` R ) } ) ) ) -> ( ( ( mulGrp ` R ) |`s ( ( Base ` R ) \ { ( 0g ` R ) } ) ) |`s |^| ran ( s e. S |-> ( s \ { ( 0g ` L ) } ) ) ) e. Grp ) |
| 116 |
113 115
|
syl |
|- ( ph -> ( ( ( mulGrp ` R ) |`s ( ( Base ` R ) \ { ( 0g ` R ) } ) ) |`s |^| ran ( s e. S |-> ( s \ { ( 0g ` L ) } ) ) ) e. Grp ) |
| 117 |
65 116
|
eqeltrrd |
|- ( ph -> ( ( mulGrp ` R ) |`s |^| ran ( s e. S |-> ( s \ { ( 0g ` L ) } ) ) ) e. Grp ) |
| 118 |
36 117
|
eqeltrrd |
|- ( ph -> ( ( mulGrp ` R ) |`s ( |^|_ s e. S s \ { ( 0g ` L ) } ) ) e. Grp ) |
| 119 |
29 118
|
eqeltrd |
|- ( ph -> ( ( mulGrp ` R ) |`s ( ( Base ` L ) \ { ( 0g ` L ) } ) ) e. Grp ) |
| 120 |
25 119
|
eqeltrd |
|- ( ph -> ( ( mulGrp ` ( R |`s |^| S ) ) |`s ( ( Base ` L ) \ { ( 0g ` L ) } ) ) e. Grp ) |
| 121 |
11 120
|
eqeltrid |
|- ( ph -> ( ( mulGrp ` L ) |`s ( ( Base ` L ) \ { ( 0g ` L ) } ) ) e. Grp ) |
| 122 |
|
eqid |
|- ( Base ` L ) = ( Base ` L ) |
| 123 |
|
eqid |
|- ( 0g ` L ) = ( 0g ` L ) |
| 124 |
|
eqid |
|- ( ( mulGrp ` L ) |`s ( ( Base ` L ) \ { ( 0g ` L ) } ) ) = ( ( mulGrp ` L ) |`s ( ( Base ` L ) \ { ( 0g ` L ) } ) ) |
| 125 |
122 123 124
|
isdrng2 |
|- ( L e. DivRing <-> ( L e. Ring /\ ( ( mulGrp ` L ) |`s ( ( Base ` L ) \ { ( 0g ` L ) } ) ) e. Grp ) ) |
| 126 |
9 121 125
|
sylanbrc |
|- ( ph -> L e. DivRing ) |