| Step |
Hyp |
Ref |
Expression |
| 1 |
|
subdrgint.1 |
⊢ 𝐿 = ( 𝑅 ↾s ∩ 𝑆 ) |
| 2 |
|
subdrgint.2 |
⊢ ( 𝜑 → 𝑅 ∈ DivRing ) |
| 3 |
|
subdrgint.3 |
⊢ ( 𝜑 → 𝑆 ⊆ ( SubRing ‘ 𝑅 ) ) |
| 4 |
|
subdrgint.4 |
⊢ ( 𝜑 → 𝑆 ≠ ∅ ) |
| 5 |
|
subdrgint.5 |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝑆 ) → ( 𝑅 ↾s 𝑠 ) ∈ DivRing ) |
| 6 |
|
subrgint |
⊢ ( ( 𝑆 ⊆ ( SubRing ‘ 𝑅 ) ∧ 𝑆 ≠ ∅ ) → ∩ 𝑆 ∈ ( SubRing ‘ 𝑅 ) ) |
| 7 |
3 4 6
|
syl2anc |
⊢ ( 𝜑 → ∩ 𝑆 ∈ ( SubRing ‘ 𝑅 ) ) |
| 8 |
1
|
subrgring |
⊢ ( ∩ 𝑆 ∈ ( SubRing ‘ 𝑅 ) → 𝐿 ∈ Ring ) |
| 9 |
7 8
|
syl |
⊢ ( 𝜑 → 𝐿 ∈ Ring ) |
| 10 |
1
|
fveq2i |
⊢ ( mulGrp ‘ 𝐿 ) = ( mulGrp ‘ ( 𝑅 ↾s ∩ 𝑆 ) ) |
| 11 |
10
|
oveq1i |
⊢ ( ( mulGrp ‘ 𝐿 ) ↾s ( ( Base ‘ 𝐿 ) ∖ { ( 0g ‘ 𝐿 ) } ) ) = ( ( mulGrp ‘ ( 𝑅 ↾s ∩ 𝑆 ) ) ↾s ( ( Base ‘ 𝐿 ) ∖ { ( 0g ‘ 𝐿 ) } ) ) |
| 12 |
|
eqid |
⊢ ( 𝑅 ↾s ∩ 𝑆 ) = ( 𝑅 ↾s ∩ 𝑆 ) |
| 13 |
|
eqid |
⊢ ( mulGrp ‘ 𝑅 ) = ( mulGrp ‘ 𝑅 ) |
| 14 |
12 13
|
mgpress |
⊢ ( ( 𝑅 ∈ DivRing ∧ ∩ 𝑆 ∈ ( SubRing ‘ 𝑅 ) ) → ( ( mulGrp ‘ 𝑅 ) ↾s ∩ 𝑆 ) = ( mulGrp ‘ ( 𝑅 ↾s ∩ 𝑆 ) ) ) |
| 15 |
2 7 14
|
syl2anc |
⊢ ( 𝜑 → ( ( mulGrp ‘ 𝑅 ) ↾s ∩ 𝑆 ) = ( mulGrp ‘ ( 𝑅 ↾s ∩ 𝑆 ) ) ) |
| 16 |
15
|
oveq1d |
⊢ ( 𝜑 → ( ( ( mulGrp ‘ 𝑅 ) ↾s ∩ 𝑆 ) ↾s ( ( Base ‘ 𝐿 ) ∖ { ( 0g ‘ 𝐿 ) } ) ) = ( ( mulGrp ‘ ( 𝑅 ↾s ∩ 𝑆 ) ) ↾s ( ( Base ‘ 𝐿 ) ∖ { ( 0g ‘ 𝐿 ) } ) ) ) |
| 17 |
|
difssd |
⊢ ( 𝜑 → ( ( Base ‘ 𝐿 ) ∖ { ( 0g ‘ 𝐿 ) } ) ⊆ ( Base ‘ 𝐿 ) ) |
| 18 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
| 19 |
18
|
subrgss |
⊢ ( ∩ 𝑆 ∈ ( SubRing ‘ 𝑅 ) → ∩ 𝑆 ⊆ ( Base ‘ 𝑅 ) ) |
| 20 |
1 18
|
ressbas2 |
⊢ ( ∩ 𝑆 ⊆ ( Base ‘ 𝑅 ) → ∩ 𝑆 = ( Base ‘ 𝐿 ) ) |
| 21 |
7 19 20
|
3syl |
⊢ ( 𝜑 → ∩ 𝑆 = ( Base ‘ 𝐿 ) ) |
| 22 |
17 21
|
sseqtrrd |
⊢ ( 𝜑 → ( ( Base ‘ 𝐿 ) ∖ { ( 0g ‘ 𝐿 ) } ) ⊆ ∩ 𝑆 ) |
| 23 |
|
ressabs |
⊢ ( ( ∩ 𝑆 ∈ ( SubRing ‘ 𝑅 ) ∧ ( ( Base ‘ 𝐿 ) ∖ { ( 0g ‘ 𝐿 ) } ) ⊆ ∩ 𝑆 ) → ( ( ( mulGrp ‘ 𝑅 ) ↾s ∩ 𝑆 ) ↾s ( ( Base ‘ 𝐿 ) ∖ { ( 0g ‘ 𝐿 ) } ) ) = ( ( mulGrp ‘ 𝑅 ) ↾s ( ( Base ‘ 𝐿 ) ∖ { ( 0g ‘ 𝐿 ) } ) ) ) |
| 24 |
7 22 23
|
syl2anc |
⊢ ( 𝜑 → ( ( ( mulGrp ‘ 𝑅 ) ↾s ∩ 𝑆 ) ↾s ( ( Base ‘ 𝐿 ) ∖ { ( 0g ‘ 𝐿 ) } ) ) = ( ( mulGrp ‘ 𝑅 ) ↾s ( ( Base ‘ 𝐿 ) ∖ { ( 0g ‘ 𝐿 ) } ) ) ) |
| 25 |
16 24
|
eqtr3d |
⊢ ( 𝜑 → ( ( mulGrp ‘ ( 𝑅 ↾s ∩ 𝑆 ) ) ↾s ( ( Base ‘ 𝐿 ) ∖ { ( 0g ‘ 𝐿 ) } ) ) = ( ( mulGrp ‘ 𝑅 ) ↾s ( ( Base ‘ 𝐿 ) ∖ { ( 0g ‘ 𝐿 ) } ) ) ) |
| 26 |
|
intiin |
⊢ ∩ 𝑆 = ∩ 𝑠 ∈ 𝑆 𝑠 |
| 27 |
21 26
|
eqtr3di |
⊢ ( 𝜑 → ( Base ‘ 𝐿 ) = ∩ 𝑠 ∈ 𝑆 𝑠 ) |
| 28 |
27
|
difeq1d |
⊢ ( 𝜑 → ( ( Base ‘ 𝐿 ) ∖ { ( 0g ‘ 𝐿 ) } ) = ( ∩ 𝑠 ∈ 𝑆 𝑠 ∖ { ( 0g ‘ 𝐿 ) } ) ) |
| 29 |
28
|
oveq2d |
⊢ ( 𝜑 → ( ( mulGrp ‘ 𝑅 ) ↾s ( ( Base ‘ 𝐿 ) ∖ { ( 0g ‘ 𝐿 ) } ) ) = ( ( mulGrp ‘ 𝑅 ) ↾s ( ∩ 𝑠 ∈ 𝑆 𝑠 ∖ { ( 0g ‘ 𝐿 ) } ) ) ) |
| 30 |
|
vex |
⊢ 𝑠 ∈ V |
| 31 |
30
|
difexi |
⊢ ( 𝑠 ∖ { ( 0g ‘ 𝐿 ) } ) ∈ V |
| 32 |
31
|
dfiin3 |
⊢ ∩ 𝑠 ∈ 𝑆 ( 𝑠 ∖ { ( 0g ‘ 𝐿 ) } ) = ∩ ran ( 𝑠 ∈ 𝑆 ↦ ( 𝑠 ∖ { ( 0g ‘ 𝐿 ) } ) ) |
| 33 |
|
iindif1 |
⊢ ( 𝑆 ≠ ∅ → ∩ 𝑠 ∈ 𝑆 ( 𝑠 ∖ { ( 0g ‘ 𝐿 ) } ) = ( ∩ 𝑠 ∈ 𝑆 𝑠 ∖ { ( 0g ‘ 𝐿 ) } ) ) |
| 34 |
4 33
|
syl |
⊢ ( 𝜑 → ∩ 𝑠 ∈ 𝑆 ( 𝑠 ∖ { ( 0g ‘ 𝐿 ) } ) = ( ∩ 𝑠 ∈ 𝑆 𝑠 ∖ { ( 0g ‘ 𝐿 ) } ) ) |
| 35 |
32 34
|
eqtr3id |
⊢ ( 𝜑 → ∩ ran ( 𝑠 ∈ 𝑆 ↦ ( 𝑠 ∖ { ( 0g ‘ 𝐿 ) } ) ) = ( ∩ 𝑠 ∈ 𝑆 𝑠 ∖ { ( 0g ‘ 𝐿 ) } ) ) |
| 36 |
35
|
oveq2d |
⊢ ( 𝜑 → ( ( mulGrp ‘ 𝑅 ) ↾s ∩ ran ( 𝑠 ∈ 𝑆 ↦ ( 𝑠 ∖ { ( 0g ‘ 𝐿 ) } ) ) ) = ( ( mulGrp ‘ 𝑅 ) ↾s ( ∩ 𝑠 ∈ 𝑆 𝑠 ∖ { ( 0g ‘ 𝐿 ) } ) ) ) |
| 37 |
|
difss |
⊢ ( ( Base ‘ 𝑅 ) ∖ { ( 0g ‘ 𝑅 ) } ) ⊆ ( Base ‘ 𝑅 ) |
| 38 |
|
eqid |
⊢ ( ( mulGrp ‘ 𝑅 ) ↾s ( ( Base ‘ 𝑅 ) ∖ { ( 0g ‘ 𝑅 ) } ) ) = ( ( mulGrp ‘ 𝑅 ) ↾s ( ( Base ‘ 𝑅 ) ∖ { ( 0g ‘ 𝑅 ) } ) ) |
| 39 |
13 18
|
mgpbas |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ ( mulGrp ‘ 𝑅 ) ) |
| 40 |
38 39
|
ressbas2 |
⊢ ( ( ( Base ‘ 𝑅 ) ∖ { ( 0g ‘ 𝑅 ) } ) ⊆ ( Base ‘ 𝑅 ) → ( ( Base ‘ 𝑅 ) ∖ { ( 0g ‘ 𝑅 ) } ) = ( Base ‘ ( ( mulGrp ‘ 𝑅 ) ↾s ( ( Base ‘ 𝑅 ) ∖ { ( 0g ‘ 𝑅 ) } ) ) ) ) |
| 41 |
37 40
|
ax-mp |
⊢ ( ( Base ‘ 𝑅 ) ∖ { ( 0g ‘ 𝑅 ) } ) = ( Base ‘ ( ( mulGrp ‘ 𝑅 ) ↾s ( ( Base ‘ 𝑅 ) ∖ { ( 0g ‘ 𝑅 ) } ) ) ) |
| 42 |
41
|
fvexi |
⊢ ( ( Base ‘ 𝑅 ) ∖ { ( 0g ‘ 𝑅 ) } ) ∈ V |
| 43 |
|
iinssiun |
⊢ ( 𝑆 ≠ ∅ → ∩ 𝑠 ∈ 𝑆 ( 𝑠 ∖ { ( 0g ‘ 𝐿 ) } ) ⊆ ∪ 𝑠 ∈ 𝑆 ( 𝑠 ∖ { ( 0g ‘ 𝐿 ) } ) ) |
| 44 |
4 43
|
syl |
⊢ ( 𝜑 → ∩ 𝑠 ∈ 𝑆 ( 𝑠 ∖ { ( 0g ‘ 𝐿 ) } ) ⊆ ∪ 𝑠 ∈ 𝑆 ( 𝑠 ∖ { ( 0g ‘ 𝐿 ) } ) ) |
| 45 |
|
subrgsubg |
⊢ ( 𝑠 ∈ ( SubRing ‘ 𝑅 ) → 𝑠 ∈ ( SubGrp ‘ 𝑅 ) ) |
| 46 |
45
|
ssriv |
⊢ ( SubRing ‘ 𝑅 ) ⊆ ( SubGrp ‘ 𝑅 ) |
| 47 |
3 46
|
sstrdi |
⊢ ( 𝜑 → 𝑆 ⊆ ( SubGrp ‘ 𝑅 ) ) |
| 48 |
|
subgint |
⊢ ( ( 𝑆 ⊆ ( SubGrp ‘ 𝑅 ) ∧ 𝑆 ≠ ∅ ) → ∩ 𝑆 ∈ ( SubGrp ‘ 𝑅 ) ) |
| 49 |
47 4 48
|
syl2anc |
⊢ ( 𝜑 → ∩ 𝑆 ∈ ( SubGrp ‘ 𝑅 ) ) |
| 50 |
|
eqid |
⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) |
| 51 |
1 50
|
subg0 |
⊢ ( ∩ 𝑆 ∈ ( SubGrp ‘ 𝑅 ) → ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝐿 ) ) |
| 52 |
49 51
|
syl |
⊢ ( 𝜑 → ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝐿 ) ) |
| 53 |
52
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝑆 ) → ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝐿 ) ) |
| 54 |
53
|
sneqd |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝑆 ) → { ( 0g ‘ 𝑅 ) } = { ( 0g ‘ 𝐿 ) } ) |
| 55 |
54
|
difeq2d |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝑆 ) → ( 𝑠 ∖ { ( 0g ‘ 𝑅 ) } ) = ( 𝑠 ∖ { ( 0g ‘ 𝐿 ) } ) ) |
| 56 |
3
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝑆 ) → 𝑠 ∈ ( SubRing ‘ 𝑅 ) ) |
| 57 |
18
|
subrgss |
⊢ ( 𝑠 ∈ ( SubRing ‘ 𝑅 ) → 𝑠 ⊆ ( Base ‘ 𝑅 ) ) |
| 58 |
56 57
|
syl |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝑆 ) → 𝑠 ⊆ ( Base ‘ 𝑅 ) ) |
| 59 |
58
|
ssdifd |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝑆 ) → ( 𝑠 ∖ { ( 0g ‘ 𝑅 ) } ) ⊆ ( ( Base ‘ 𝑅 ) ∖ { ( 0g ‘ 𝑅 ) } ) ) |
| 60 |
55 59
|
eqsstrrd |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝑆 ) → ( 𝑠 ∖ { ( 0g ‘ 𝐿 ) } ) ⊆ ( ( Base ‘ 𝑅 ) ∖ { ( 0g ‘ 𝑅 ) } ) ) |
| 61 |
60
|
iunssd |
⊢ ( 𝜑 → ∪ 𝑠 ∈ 𝑆 ( 𝑠 ∖ { ( 0g ‘ 𝐿 ) } ) ⊆ ( ( Base ‘ 𝑅 ) ∖ { ( 0g ‘ 𝑅 ) } ) ) |
| 62 |
44 61
|
sstrd |
⊢ ( 𝜑 → ∩ 𝑠 ∈ 𝑆 ( 𝑠 ∖ { ( 0g ‘ 𝐿 ) } ) ⊆ ( ( Base ‘ 𝑅 ) ∖ { ( 0g ‘ 𝑅 ) } ) ) |
| 63 |
32 62
|
eqsstrrid |
⊢ ( 𝜑 → ∩ ran ( 𝑠 ∈ 𝑆 ↦ ( 𝑠 ∖ { ( 0g ‘ 𝐿 ) } ) ) ⊆ ( ( Base ‘ 𝑅 ) ∖ { ( 0g ‘ 𝑅 ) } ) ) |
| 64 |
|
ressabs |
⊢ ( ( ( ( Base ‘ 𝑅 ) ∖ { ( 0g ‘ 𝑅 ) } ) ∈ V ∧ ∩ ran ( 𝑠 ∈ 𝑆 ↦ ( 𝑠 ∖ { ( 0g ‘ 𝐿 ) } ) ) ⊆ ( ( Base ‘ 𝑅 ) ∖ { ( 0g ‘ 𝑅 ) } ) ) → ( ( ( mulGrp ‘ 𝑅 ) ↾s ( ( Base ‘ 𝑅 ) ∖ { ( 0g ‘ 𝑅 ) } ) ) ↾s ∩ ran ( 𝑠 ∈ 𝑆 ↦ ( 𝑠 ∖ { ( 0g ‘ 𝐿 ) } ) ) ) = ( ( mulGrp ‘ 𝑅 ) ↾s ∩ ran ( 𝑠 ∈ 𝑆 ↦ ( 𝑠 ∖ { ( 0g ‘ 𝐿 ) } ) ) ) ) |
| 65 |
42 63 64
|
sylancr |
⊢ ( 𝜑 → ( ( ( mulGrp ‘ 𝑅 ) ↾s ( ( Base ‘ 𝑅 ) ∖ { ( 0g ‘ 𝑅 ) } ) ) ↾s ∩ ran ( 𝑠 ∈ 𝑆 ↦ ( 𝑠 ∖ { ( 0g ‘ 𝐿 ) } ) ) ) = ( ( mulGrp ‘ 𝑅 ) ↾s ∩ ran ( 𝑠 ∈ 𝑆 ↦ ( 𝑠 ∖ { ( 0g ‘ 𝐿 ) } ) ) ) ) |
| 66 |
18 50 38
|
drngmgp |
⊢ ( 𝑅 ∈ DivRing → ( ( mulGrp ‘ 𝑅 ) ↾s ( ( Base ‘ 𝑅 ) ∖ { ( 0g ‘ 𝑅 ) } ) ) ∈ Grp ) |
| 67 |
2 66
|
syl |
⊢ ( 𝜑 → ( ( mulGrp ‘ 𝑅 ) ↾s ( ( Base ‘ 𝑅 ) ∖ { ( 0g ‘ 𝑅 ) } ) ) ∈ Grp ) |
| 68 |
67
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝑆 ) → ( ( mulGrp ‘ 𝑅 ) ↾s ( ( Base ‘ 𝑅 ) ∖ { ( 0g ‘ 𝑅 ) } ) ) ∈ Grp ) |
| 69 |
60 41
|
sseqtrdi |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝑆 ) → ( 𝑠 ∖ { ( 0g ‘ 𝐿 ) } ) ⊆ ( Base ‘ ( ( mulGrp ‘ 𝑅 ) ↾s ( ( Base ‘ 𝑅 ) ∖ { ( 0g ‘ 𝑅 ) } ) ) ) ) |
| 70 |
|
ressabs |
⊢ ( ( ( ( Base ‘ 𝑅 ) ∖ { ( 0g ‘ 𝑅 ) } ) ∈ V ∧ ( 𝑠 ∖ { ( 0g ‘ 𝐿 ) } ) ⊆ ( ( Base ‘ 𝑅 ) ∖ { ( 0g ‘ 𝑅 ) } ) ) → ( ( ( mulGrp ‘ 𝑅 ) ↾s ( ( Base ‘ 𝑅 ) ∖ { ( 0g ‘ 𝑅 ) } ) ) ↾s ( 𝑠 ∖ { ( 0g ‘ 𝐿 ) } ) ) = ( ( mulGrp ‘ 𝑅 ) ↾s ( 𝑠 ∖ { ( 0g ‘ 𝐿 ) } ) ) ) |
| 71 |
42 60 70
|
sylancr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝑆 ) → ( ( ( mulGrp ‘ 𝑅 ) ↾s ( ( Base ‘ 𝑅 ) ∖ { ( 0g ‘ 𝑅 ) } ) ) ↾s ( 𝑠 ∖ { ( 0g ‘ 𝐿 ) } ) ) = ( ( mulGrp ‘ 𝑅 ) ↾s ( 𝑠 ∖ { ( 0g ‘ 𝐿 ) } ) ) ) |
| 72 |
|
eqid |
⊢ ( 𝑅 ↾s 𝑠 ) = ( 𝑅 ↾s 𝑠 ) |
| 73 |
72 13
|
mgpress |
⊢ ( ( 𝑅 ∈ DivRing ∧ 𝑠 ∈ 𝑆 ) → ( ( mulGrp ‘ 𝑅 ) ↾s 𝑠 ) = ( mulGrp ‘ ( 𝑅 ↾s 𝑠 ) ) ) |
| 74 |
2 73
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝑆 ) → ( ( mulGrp ‘ 𝑅 ) ↾s 𝑠 ) = ( mulGrp ‘ ( 𝑅 ↾s 𝑠 ) ) ) |
| 75 |
55
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝑆 ) → ( 𝑠 ∖ { ( 0g ‘ 𝐿 ) } ) = ( 𝑠 ∖ { ( 0g ‘ 𝑅 ) } ) ) |
| 76 |
74 75
|
oveq12d |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝑆 ) → ( ( ( mulGrp ‘ 𝑅 ) ↾s 𝑠 ) ↾s ( 𝑠 ∖ { ( 0g ‘ 𝐿 ) } ) ) = ( ( mulGrp ‘ ( 𝑅 ↾s 𝑠 ) ) ↾s ( 𝑠 ∖ { ( 0g ‘ 𝑅 ) } ) ) ) |
| 77 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝑆 ) → 𝑠 ∈ 𝑆 ) |
| 78 |
|
difssd |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝑆 ) → ( 𝑠 ∖ { ( 0g ‘ 𝐿 ) } ) ⊆ 𝑠 ) |
| 79 |
|
ressabs |
⊢ ( ( 𝑠 ∈ 𝑆 ∧ ( 𝑠 ∖ { ( 0g ‘ 𝐿 ) } ) ⊆ 𝑠 ) → ( ( ( mulGrp ‘ 𝑅 ) ↾s 𝑠 ) ↾s ( 𝑠 ∖ { ( 0g ‘ 𝐿 ) } ) ) = ( ( mulGrp ‘ 𝑅 ) ↾s ( 𝑠 ∖ { ( 0g ‘ 𝐿 ) } ) ) ) |
| 80 |
77 78 79
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝑆 ) → ( ( ( mulGrp ‘ 𝑅 ) ↾s 𝑠 ) ↾s ( 𝑠 ∖ { ( 0g ‘ 𝐿 ) } ) ) = ( ( mulGrp ‘ 𝑅 ) ↾s ( 𝑠 ∖ { ( 0g ‘ 𝐿 ) } ) ) ) |
| 81 |
76 80
|
eqtr3d |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝑆 ) → ( ( mulGrp ‘ ( 𝑅 ↾s 𝑠 ) ) ↾s ( 𝑠 ∖ { ( 0g ‘ 𝑅 ) } ) ) = ( ( mulGrp ‘ 𝑅 ) ↾s ( 𝑠 ∖ { ( 0g ‘ 𝐿 ) } ) ) ) |
| 82 |
72 18
|
ressbas2 |
⊢ ( 𝑠 ⊆ ( Base ‘ 𝑅 ) → 𝑠 = ( Base ‘ ( 𝑅 ↾s 𝑠 ) ) ) |
| 83 |
56 57 82
|
3syl |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝑆 ) → 𝑠 = ( Base ‘ ( 𝑅 ↾s 𝑠 ) ) ) |
| 84 |
72 50
|
subrg0 |
⊢ ( 𝑠 ∈ ( SubRing ‘ 𝑅 ) → ( 0g ‘ 𝑅 ) = ( 0g ‘ ( 𝑅 ↾s 𝑠 ) ) ) |
| 85 |
56 84
|
syl |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝑆 ) → ( 0g ‘ 𝑅 ) = ( 0g ‘ ( 𝑅 ↾s 𝑠 ) ) ) |
| 86 |
85
|
sneqd |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝑆 ) → { ( 0g ‘ 𝑅 ) } = { ( 0g ‘ ( 𝑅 ↾s 𝑠 ) ) } ) |
| 87 |
83 86
|
difeq12d |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝑆 ) → ( 𝑠 ∖ { ( 0g ‘ 𝑅 ) } ) = ( ( Base ‘ ( 𝑅 ↾s 𝑠 ) ) ∖ { ( 0g ‘ ( 𝑅 ↾s 𝑠 ) ) } ) ) |
| 88 |
87
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝑆 ) → ( ( mulGrp ‘ ( 𝑅 ↾s 𝑠 ) ) ↾s ( 𝑠 ∖ { ( 0g ‘ 𝑅 ) } ) ) = ( ( mulGrp ‘ ( 𝑅 ↾s 𝑠 ) ) ↾s ( ( Base ‘ ( 𝑅 ↾s 𝑠 ) ) ∖ { ( 0g ‘ ( 𝑅 ↾s 𝑠 ) ) } ) ) ) |
| 89 |
|
eqid |
⊢ ( Base ‘ ( 𝑅 ↾s 𝑠 ) ) = ( Base ‘ ( 𝑅 ↾s 𝑠 ) ) |
| 90 |
|
eqid |
⊢ ( 0g ‘ ( 𝑅 ↾s 𝑠 ) ) = ( 0g ‘ ( 𝑅 ↾s 𝑠 ) ) |
| 91 |
|
eqid |
⊢ ( ( mulGrp ‘ ( 𝑅 ↾s 𝑠 ) ) ↾s ( ( Base ‘ ( 𝑅 ↾s 𝑠 ) ) ∖ { ( 0g ‘ ( 𝑅 ↾s 𝑠 ) ) } ) ) = ( ( mulGrp ‘ ( 𝑅 ↾s 𝑠 ) ) ↾s ( ( Base ‘ ( 𝑅 ↾s 𝑠 ) ) ∖ { ( 0g ‘ ( 𝑅 ↾s 𝑠 ) ) } ) ) |
| 92 |
89 90 91
|
drngmgp |
⊢ ( ( 𝑅 ↾s 𝑠 ) ∈ DivRing → ( ( mulGrp ‘ ( 𝑅 ↾s 𝑠 ) ) ↾s ( ( Base ‘ ( 𝑅 ↾s 𝑠 ) ) ∖ { ( 0g ‘ ( 𝑅 ↾s 𝑠 ) ) } ) ) ∈ Grp ) |
| 93 |
5 92
|
syl |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝑆 ) → ( ( mulGrp ‘ ( 𝑅 ↾s 𝑠 ) ) ↾s ( ( Base ‘ ( 𝑅 ↾s 𝑠 ) ) ∖ { ( 0g ‘ ( 𝑅 ↾s 𝑠 ) ) } ) ) ∈ Grp ) |
| 94 |
88 93
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝑆 ) → ( ( mulGrp ‘ ( 𝑅 ↾s 𝑠 ) ) ↾s ( 𝑠 ∖ { ( 0g ‘ 𝑅 ) } ) ) ∈ Grp ) |
| 95 |
81 94
|
eqeltrrd |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝑆 ) → ( ( mulGrp ‘ 𝑅 ) ↾s ( 𝑠 ∖ { ( 0g ‘ 𝐿 ) } ) ) ∈ Grp ) |
| 96 |
71 95
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝑆 ) → ( ( ( mulGrp ‘ 𝑅 ) ↾s ( ( Base ‘ 𝑅 ) ∖ { ( 0g ‘ 𝑅 ) } ) ) ↾s ( 𝑠 ∖ { ( 0g ‘ 𝐿 ) } ) ) ∈ Grp ) |
| 97 |
|
eqid |
⊢ ( Base ‘ ( ( mulGrp ‘ 𝑅 ) ↾s ( ( Base ‘ 𝑅 ) ∖ { ( 0g ‘ 𝑅 ) } ) ) ) = ( Base ‘ ( ( mulGrp ‘ 𝑅 ) ↾s ( ( Base ‘ 𝑅 ) ∖ { ( 0g ‘ 𝑅 ) } ) ) ) |
| 98 |
97
|
issubg |
⊢ ( ( 𝑠 ∖ { ( 0g ‘ 𝐿 ) } ) ∈ ( SubGrp ‘ ( ( mulGrp ‘ 𝑅 ) ↾s ( ( Base ‘ 𝑅 ) ∖ { ( 0g ‘ 𝑅 ) } ) ) ) ↔ ( ( ( mulGrp ‘ 𝑅 ) ↾s ( ( Base ‘ 𝑅 ) ∖ { ( 0g ‘ 𝑅 ) } ) ) ∈ Grp ∧ ( 𝑠 ∖ { ( 0g ‘ 𝐿 ) } ) ⊆ ( Base ‘ ( ( mulGrp ‘ 𝑅 ) ↾s ( ( Base ‘ 𝑅 ) ∖ { ( 0g ‘ 𝑅 ) } ) ) ) ∧ ( ( ( mulGrp ‘ 𝑅 ) ↾s ( ( Base ‘ 𝑅 ) ∖ { ( 0g ‘ 𝑅 ) } ) ) ↾s ( 𝑠 ∖ { ( 0g ‘ 𝐿 ) } ) ) ∈ Grp ) ) |
| 99 |
68 69 96 98
|
syl3anbrc |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝑆 ) → ( 𝑠 ∖ { ( 0g ‘ 𝐿 ) } ) ∈ ( SubGrp ‘ ( ( mulGrp ‘ 𝑅 ) ↾s ( ( Base ‘ 𝑅 ) ∖ { ( 0g ‘ 𝑅 ) } ) ) ) ) |
| 100 |
99
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑠 ∈ 𝑆 ( 𝑠 ∖ { ( 0g ‘ 𝐿 ) } ) ∈ ( SubGrp ‘ ( ( mulGrp ‘ 𝑅 ) ↾s ( ( Base ‘ 𝑅 ) ∖ { ( 0g ‘ 𝑅 ) } ) ) ) ) |
| 101 |
|
eqid |
⊢ ( 𝑠 ∈ 𝑆 ↦ ( 𝑠 ∖ { ( 0g ‘ 𝐿 ) } ) ) = ( 𝑠 ∈ 𝑆 ↦ ( 𝑠 ∖ { ( 0g ‘ 𝐿 ) } ) ) |
| 102 |
101
|
rnmptss |
⊢ ( ∀ 𝑠 ∈ 𝑆 ( 𝑠 ∖ { ( 0g ‘ 𝐿 ) } ) ∈ ( SubGrp ‘ ( ( mulGrp ‘ 𝑅 ) ↾s ( ( Base ‘ 𝑅 ) ∖ { ( 0g ‘ 𝑅 ) } ) ) ) → ran ( 𝑠 ∈ 𝑆 ↦ ( 𝑠 ∖ { ( 0g ‘ 𝐿 ) } ) ) ⊆ ( SubGrp ‘ ( ( mulGrp ‘ 𝑅 ) ↾s ( ( Base ‘ 𝑅 ) ∖ { ( 0g ‘ 𝑅 ) } ) ) ) ) |
| 103 |
100 102
|
syl |
⊢ ( 𝜑 → ran ( 𝑠 ∈ 𝑆 ↦ ( 𝑠 ∖ { ( 0g ‘ 𝐿 ) } ) ) ⊆ ( SubGrp ‘ ( ( mulGrp ‘ 𝑅 ) ↾s ( ( Base ‘ 𝑅 ) ∖ { ( 0g ‘ 𝑅 ) } ) ) ) ) |
| 104 |
|
dmmptg |
⊢ ( ∀ 𝑠 ∈ 𝑆 ( 𝑠 ∖ { ( 0g ‘ 𝐿 ) } ) ∈ V → dom ( 𝑠 ∈ 𝑆 ↦ ( 𝑠 ∖ { ( 0g ‘ 𝐿 ) } ) ) = 𝑆 ) |
| 105 |
|
difexg |
⊢ ( 𝑠 ∈ 𝑆 → ( 𝑠 ∖ { ( 0g ‘ 𝐿 ) } ) ∈ V ) |
| 106 |
104 105
|
mprg |
⊢ dom ( 𝑠 ∈ 𝑆 ↦ ( 𝑠 ∖ { ( 0g ‘ 𝐿 ) } ) ) = 𝑆 |
| 107 |
106
|
a1i |
⊢ ( 𝜑 → dom ( 𝑠 ∈ 𝑆 ↦ ( 𝑠 ∖ { ( 0g ‘ 𝐿 ) } ) ) = 𝑆 ) |
| 108 |
107 4
|
eqnetrd |
⊢ ( 𝜑 → dom ( 𝑠 ∈ 𝑆 ↦ ( 𝑠 ∖ { ( 0g ‘ 𝐿 ) } ) ) ≠ ∅ ) |
| 109 |
|
dm0rn0 |
⊢ ( dom ( 𝑠 ∈ 𝑆 ↦ ( 𝑠 ∖ { ( 0g ‘ 𝐿 ) } ) ) = ∅ ↔ ran ( 𝑠 ∈ 𝑆 ↦ ( 𝑠 ∖ { ( 0g ‘ 𝐿 ) } ) ) = ∅ ) |
| 110 |
109
|
necon3bii |
⊢ ( dom ( 𝑠 ∈ 𝑆 ↦ ( 𝑠 ∖ { ( 0g ‘ 𝐿 ) } ) ) ≠ ∅ ↔ ran ( 𝑠 ∈ 𝑆 ↦ ( 𝑠 ∖ { ( 0g ‘ 𝐿 ) } ) ) ≠ ∅ ) |
| 111 |
108 110
|
sylib |
⊢ ( 𝜑 → ran ( 𝑠 ∈ 𝑆 ↦ ( 𝑠 ∖ { ( 0g ‘ 𝐿 ) } ) ) ≠ ∅ ) |
| 112 |
|
subgint |
⊢ ( ( ran ( 𝑠 ∈ 𝑆 ↦ ( 𝑠 ∖ { ( 0g ‘ 𝐿 ) } ) ) ⊆ ( SubGrp ‘ ( ( mulGrp ‘ 𝑅 ) ↾s ( ( Base ‘ 𝑅 ) ∖ { ( 0g ‘ 𝑅 ) } ) ) ) ∧ ran ( 𝑠 ∈ 𝑆 ↦ ( 𝑠 ∖ { ( 0g ‘ 𝐿 ) } ) ) ≠ ∅ ) → ∩ ran ( 𝑠 ∈ 𝑆 ↦ ( 𝑠 ∖ { ( 0g ‘ 𝐿 ) } ) ) ∈ ( SubGrp ‘ ( ( mulGrp ‘ 𝑅 ) ↾s ( ( Base ‘ 𝑅 ) ∖ { ( 0g ‘ 𝑅 ) } ) ) ) ) |
| 113 |
103 111 112
|
syl2anc |
⊢ ( 𝜑 → ∩ ran ( 𝑠 ∈ 𝑆 ↦ ( 𝑠 ∖ { ( 0g ‘ 𝐿 ) } ) ) ∈ ( SubGrp ‘ ( ( mulGrp ‘ 𝑅 ) ↾s ( ( Base ‘ 𝑅 ) ∖ { ( 0g ‘ 𝑅 ) } ) ) ) ) |
| 114 |
|
eqid |
⊢ ( ( ( mulGrp ‘ 𝑅 ) ↾s ( ( Base ‘ 𝑅 ) ∖ { ( 0g ‘ 𝑅 ) } ) ) ↾s ∩ ran ( 𝑠 ∈ 𝑆 ↦ ( 𝑠 ∖ { ( 0g ‘ 𝐿 ) } ) ) ) = ( ( ( mulGrp ‘ 𝑅 ) ↾s ( ( Base ‘ 𝑅 ) ∖ { ( 0g ‘ 𝑅 ) } ) ) ↾s ∩ ran ( 𝑠 ∈ 𝑆 ↦ ( 𝑠 ∖ { ( 0g ‘ 𝐿 ) } ) ) ) |
| 115 |
114
|
subggrp |
⊢ ( ∩ ran ( 𝑠 ∈ 𝑆 ↦ ( 𝑠 ∖ { ( 0g ‘ 𝐿 ) } ) ) ∈ ( SubGrp ‘ ( ( mulGrp ‘ 𝑅 ) ↾s ( ( Base ‘ 𝑅 ) ∖ { ( 0g ‘ 𝑅 ) } ) ) ) → ( ( ( mulGrp ‘ 𝑅 ) ↾s ( ( Base ‘ 𝑅 ) ∖ { ( 0g ‘ 𝑅 ) } ) ) ↾s ∩ ran ( 𝑠 ∈ 𝑆 ↦ ( 𝑠 ∖ { ( 0g ‘ 𝐿 ) } ) ) ) ∈ Grp ) |
| 116 |
113 115
|
syl |
⊢ ( 𝜑 → ( ( ( mulGrp ‘ 𝑅 ) ↾s ( ( Base ‘ 𝑅 ) ∖ { ( 0g ‘ 𝑅 ) } ) ) ↾s ∩ ran ( 𝑠 ∈ 𝑆 ↦ ( 𝑠 ∖ { ( 0g ‘ 𝐿 ) } ) ) ) ∈ Grp ) |
| 117 |
65 116
|
eqeltrrd |
⊢ ( 𝜑 → ( ( mulGrp ‘ 𝑅 ) ↾s ∩ ran ( 𝑠 ∈ 𝑆 ↦ ( 𝑠 ∖ { ( 0g ‘ 𝐿 ) } ) ) ) ∈ Grp ) |
| 118 |
36 117
|
eqeltrrd |
⊢ ( 𝜑 → ( ( mulGrp ‘ 𝑅 ) ↾s ( ∩ 𝑠 ∈ 𝑆 𝑠 ∖ { ( 0g ‘ 𝐿 ) } ) ) ∈ Grp ) |
| 119 |
29 118
|
eqeltrd |
⊢ ( 𝜑 → ( ( mulGrp ‘ 𝑅 ) ↾s ( ( Base ‘ 𝐿 ) ∖ { ( 0g ‘ 𝐿 ) } ) ) ∈ Grp ) |
| 120 |
25 119
|
eqeltrd |
⊢ ( 𝜑 → ( ( mulGrp ‘ ( 𝑅 ↾s ∩ 𝑆 ) ) ↾s ( ( Base ‘ 𝐿 ) ∖ { ( 0g ‘ 𝐿 ) } ) ) ∈ Grp ) |
| 121 |
11 120
|
eqeltrid |
⊢ ( 𝜑 → ( ( mulGrp ‘ 𝐿 ) ↾s ( ( Base ‘ 𝐿 ) ∖ { ( 0g ‘ 𝐿 ) } ) ) ∈ Grp ) |
| 122 |
|
eqid |
⊢ ( Base ‘ 𝐿 ) = ( Base ‘ 𝐿 ) |
| 123 |
|
eqid |
⊢ ( 0g ‘ 𝐿 ) = ( 0g ‘ 𝐿 ) |
| 124 |
|
eqid |
⊢ ( ( mulGrp ‘ 𝐿 ) ↾s ( ( Base ‘ 𝐿 ) ∖ { ( 0g ‘ 𝐿 ) } ) ) = ( ( mulGrp ‘ 𝐿 ) ↾s ( ( Base ‘ 𝐿 ) ∖ { ( 0g ‘ 𝐿 ) } ) ) |
| 125 |
122 123 124
|
isdrng2 |
⊢ ( 𝐿 ∈ DivRing ↔ ( 𝐿 ∈ Ring ∧ ( ( mulGrp ‘ 𝐿 ) ↾s ( ( Base ‘ 𝐿 ) ∖ { ( 0g ‘ 𝐿 ) } ) ) ∈ Grp ) ) |
| 126 |
9 121 125
|
sylanbrc |
⊢ ( 𝜑 → 𝐿 ∈ DivRing ) |