Step |
Hyp |
Ref |
Expression |
1 |
|
simp1 |
⊢ ( ( 𝑅 ∈ DivRing ∧ 𝑆 ⊆ ( SubDRing ‘ 𝑅 ) ∧ 𝑆 ≠ ∅ ) → 𝑅 ∈ DivRing ) |
2 |
|
simp2 |
⊢ ( ( 𝑅 ∈ DivRing ∧ 𝑆 ⊆ ( SubDRing ‘ 𝑅 ) ∧ 𝑆 ≠ ∅ ) → 𝑆 ⊆ ( SubDRing ‘ 𝑅 ) ) |
3 |
|
issdrg |
⊢ ( 𝑠 ∈ ( SubDRing ‘ 𝑅 ) ↔ ( 𝑅 ∈ DivRing ∧ 𝑠 ∈ ( SubRing ‘ 𝑅 ) ∧ ( 𝑅 ↾s 𝑠 ) ∈ DivRing ) ) |
4 |
3
|
simp2bi |
⊢ ( 𝑠 ∈ ( SubDRing ‘ 𝑅 ) → 𝑠 ∈ ( SubRing ‘ 𝑅 ) ) |
5 |
4
|
ssriv |
⊢ ( SubDRing ‘ 𝑅 ) ⊆ ( SubRing ‘ 𝑅 ) |
6 |
2 5
|
sstrdi |
⊢ ( ( 𝑅 ∈ DivRing ∧ 𝑆 ⊆ ( SubDRing ‘ 𝑅 ) ∧ 𝑆 ≠ ∅ ) → 𝑆 ⊆ ( SubRing ‘ 𝑅 ) ) |
7 |
|
simp3 |
⊢ ( ( 𝑅 ∈ DivRing ∧ 𝑆 ⊆ ( SubDRing ‘ 𝑅 ) ∧ 𝑆 ≠ ∅ ) → 𝑆 ≠ ∅ ) |
8 |
|
subrgint |
⊢ ( ( 𝑆 ⊆ ( SubRing ‘ 𝑅 ) ∧ 𝑆 ≠ ∅ ) → ∩ 𝑆 ∈ ( SubRing ‘ 𝑅 ) ) |
9 |
6 7 8
|
syl2anc |
⊢ ( ( 𝑅 ∈ DivRing ∧ 𝑆 ⊆ ( SubDRing ‘ 𝑅 ) ∧ 𝑆 ≠ ∅ ) → ∩ 𝑆 ∈ ( SubRing ‘ 𝑅 ) ) |
10 |
|
eqid |
⊢ ( 𝑅 ↾s ∩ 𝑆 ) = ( 𝑅 ↾s ∩ 𝑆 ) |
11 |
2
|
sselda |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ 𝑆 ⊆ ( SubDRing ‘ 𝑅 ) ∧ 𝑆 ≠ ∅ ) ∧ 𝑠 ∈ 𝑆 ) → 𝑠 ∈ ( SubDRing ‘ 𝑅 ) ) |
12 |
3
|
simp3bi |
⊢ ( 𝑠 ∈ ( SubDRing ‘ 𝑅 ) → ( 𝑅 ↾s 𝑠 ) ∈ DivRing ) |
13 |
11 12
|
syl |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ 𝑆 ⊆ ( SubDRing ‘ 𝑅 ) ∧ 𝑆 ≠ ∅ ) ∧ 𝑠 ∈ 𝑆 ) → ( 𝑅 ↾s 𝑠 ) ∈ DivRing ) |
14 |
10 1 6 7 13
|
subdrgint |
⊢ ( ( 𝑅 ∈ DivRing ∧ 𝑆 ⊆ ( SubDRing ‘ 𝑅 ) ∧ 𝑆 ≠ ∅ ) → ( 𝑅 ↾s ∩ 𝑆 ) ∈ DivRing ) |
15 |
|
issdrg |
⊢ ( ∩ 𝑆 ∈ ( SubDRing ‘ 𝑅 ) ↔ ( 𝑅 ∈ DivRing ∧ ∩ 𝑆 ∈ ( SubRing ‘ 𝑅 ) ∧ ( 𝑅 ↾s ∩ 𝑆 ) ∈ DivRing ) ) |
16 |
1 9 14 15
|
syl3anbrc |
⊢ ( ( 𝑅 ∈ DivRing ∧ 𝑆 ⊆ ( SubDRing ‘ 𝑅 ) ∧ 𝑆 ≠ ∅ ) → ∩ 𝑆 ∈ ( SubDRing ‘ 𝑅 ) ) |