Metamath Proof Explorer


Theorem sdrgint

Description: The intersection of a nonempty collection of sub division rings is a sub division ring. (Contributed by Thierry Arnoux, 21-Aug-2023)

Ref Expression
Assertion sdrgint ( ( 𝑅 ∈ DivRing ∧ 𝑆 ⊆ ( SubDRing ‘ 𝑅 ) ∧ 𝑆 ≠ ∅ ) → 𝑆 ∈ ( SubDRing ‘ 𝑅 ) )

Proof

Step Hyp Ref Expression
1 simp1 ( ( 𝑅 ∈ DivRing ∧ 𝑆 ⊆ ( SubDRing ‘ 𝑅 ) ∧ 𝑆 ≠ ∅ ) → 𝑅 ∈ DivRing )
2 simp2 ( ( 𝑅 ∈ DivRing ∧ 𝑆 ⊆ ( SubDRing ‘ 𝑅 ) ∧ 𝑆 ≠ ∅ ) → 𝑆 ⊆ ( SubDRing ‘ 𝑅 ) )
3 issdrg ( 𝑠 ∈ ( SubDRing ‘ 𝑅 ) ↔ ( 𝑅 ∈ DivRing ∧ 𝑠 ∈ ( SubRing ‘ 𝑅 ) ∧ ( 𝑅s 𝑠 ) ∈ DivRing ) )
4 3 simp2bi ( 𝑠 ∈ ( SubDRing ‘ 𝑅 ) → 𝑠 ∈ ( SubRing ‘ 𝑅 ) )
5 4 ssriv ( SubDRing ‘ 𝑅 ) ⊆ ( SubRing ‘ 𝑅 )
6 2 5 sstrdi ( ( 𝑅 ∈ DivRing ∧ 𝑆 ⊆ ( SubDRing ‘ 𝑅 ) ∧ 𝑆 ≠ ∅ ) → 𝑆 ⊆ ( SubRing ‘ 𝑅 ) )
7 simp3 ( ( 𝑅 ∈ DivRing ∧ 𝑆 ⊆ ( SubDRing ‘ 𝑅 ) ∧ 𝑆 ≠ ∅ ) → 𝑆 ≠ ∅ )
8 subrgint ( ( 𝑆 ⊆ ( SubRing ‘ 𝑅 ) ∧ 𝑆 ≠ ∅ ) → 𝑆 ∈ ( SubRing ‘ 𝑅 ) )
9 6 7 8 syl2anc ( ( 𝑅 ∈ DivRing ∧ 𝑆 ⊆ ( SubDRing ‘ 𝑅 ) ∧ 𝑆 ≠ ∅ ) → 𝑆 ∈ ( SubRing ‘ 𝑅 ) )
10 eqid ( 𝑅s 𝑆 ) = ( 𝑅s 𝑆 )
11 2 sselda ( ( ( 𝑅 ∈ DivRing ∧ 𝑆 ⊆ ( SubDRing ‘ 𝑅 ) ∧ 𝑆 ≠ ∅ ) ∧ 𝑠𝑆 ) → 𝑠 ∈ ( SubDRing ‘ 𝑅 ) )
12 3 simp3bi ( 𝑠 ∈ ( SubDRing ‘ 𝑅 ) → ( 𝑅s 𝑠 ) ∈ DivRing )
13 11 12 syl ( ( ( 𝑅 ∈ DivRing ∧ 𝑆 ⊆ ( SubDRing ‘ 𝑅 ) ∧ 𝑆 ≠ ∅ ) ∧ 𝑠𝑆 ) → ( 𝑅s 𝑠 ) ∈ DivRing )
14 10 1 6 7 13 subdrgint ( ( 𝑅 ∈ DivRing ∧ 𝑆 ⊆ ( SubDRing ‘ 𝑅 ) ∧ 𝑆 ≠ ∅ ) → ( 𝑅s 𝑆 ) ∈ DivRing )
15 issdrg ( 𝑆 ∈ ( SubDRing ‘ 𝑅 ) ↔ ( 𝑅 ∈ DivRing ∧ 𝑆 ∈ ( SubRing ‘ 𝑅 ) ∧ ( 𝑅s 𝑆 ) ∈ DivRing ) )
16 1 9 14 15 syl3anbrc ( ( 𝑅 ∈ DivRing ∧ 𝑆 ⊆ ( SubDRing ‘ 𝑅 ) ∧ 𝑆 ≠ ∅ ) → 𝑆 ∈ ( SubDRing ‘ 𝑅 ) )