Metamath Proof Explorer


Theorem sdrgint

Description: The intersection of a nonempty collection of sub division rings is a sub division ring. (Contributed by Thierry Arnoux, 21-Aug-2023)

Ref Expression
Assertion sdrgint R DivRing S SubDRing R S S SubDRing R

Proof

Step Hyp Ref Expression
1 simp1 R DivRing S SubDRing R S R DivRing
2 simp2 R DivRing S SubDRing R S S SubDRing R
3 issdrg s SubDRing R R DivRing s SubRing R R 𝑠 s DivRing
4 3 simp2bi s SubDRing R s SubRing R
5 4 ssriv SubDRing R SubRing R
6 2 5 sstrdi R DivRing S SubDRing R S S SubRing R
7 simp3 R DivRing S SubDRing R S S
8 subrgint S SubRing R S S SubRing R
9 6 7 8 syl2anc R DivRing S SubDRing R S S SubRing R
10 eqid R 𝑠 S = R 𝑠 S
11 2 sselda R DivRing S SubDRing R S s S s SubDRing R
12 3 simp3bi s SubDRing R R 𝑠 s DivRing
13 11 12 syl R DivRing S SubDRing R S s S R 𝑠 s DivRing
14 10 1 6 7 13 subdrgint R DivRing S SubDRing R S R 𝑠 S DivRing
15 issdrg S SubDRing R R DivRing S SubRing R R 𝑠 S DivRing
16 1 9 14 15 syl3anbrc R DivRing S SubDRing R S S SubDRing R