| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simp1 |
|- ( ( R e. DivRing /\ S C_ ( SubDRing ` R ) /\ S =/= (/) ) -> R e. DivRing ) |
| 2 |
|
simp2 |
|- ( ( R e. DivRing /\ S C_ ( SubDRing ` R ) /\ S =/= (/) ) -> S C_ ( SubDRing ` R ) ) |
| 3 |
|
issdrg |
|- ( s e. ( SubDRing ` R ) <-> ( R e. DivRing /\ s e. ( SubRing ` R ) /\ ( R |`s s ) e. DivRing ) ) |
| 4 |
3
|
simp2bi |
|- ( s e. ( SubDRing ` R ) -> s e. ( SubRing ` R ) ) |
| 5 |
4
|
ssriv |
|- ( SubDRing ` R ) C_ ( SubRing ` R ) |
| 6 |
2 5
|
sstrdi |
|- ( ( R e. DivRing /\ S C_ ( SubDRing ` R ) /\ S =/= (/) ) -> S C_ ( SubRing ` R ) ) |
| 7 |
|
simp3 |
|- ( ( R e. DivRing /\ S C_ ( SubDRing ` R ) /\ S =/= (/) ) -> S =/= (/) ) |
| 8 |
|
subrgint |
|- ( ( S C_ ( SubRing ` R ) /\ S =/= (/) ) -> |^| S e. ( SubRing ` R ) ) |
| 9 |
6 7 8
|
syl2anc |
|- ( ( R e. DivRing /\ S C_ ( SubDRing ` R ) /\ S =/= (/) ) -> |^| S e. ( SubRing ` R ) ) |
| 10 |
|
eqid |
|- ( R |`s |^| S ) = ( R |`s |^| S ) |
| 11 |
2
|
sselda |
|- ( ( ( R e. DivRing /\ S C_ ( SubDRing ` R ) /\ S =/= (/) ) /\ s e. S ) -> s e. ( SubDRing ` R ) ) |
| 12 |
3
|
simp3bi |
|- ( s e. ( SubDRing ` R ) -> ( R |`s s ) e. DivRing ) |
| 13 |
11 12
|
syl |
|- ( ( ( R e. DivRing /\ S C_ ( SubDRing ` R ) /\ S =/= (/) ) /\ s e. S ) -> ( R |`s s ) e. DivRing ) |
| 14 |
10 1 6 7 13
|
subdrgint |
|- ( ( R e. DivRing /\ S C_ ( SubDRing ` R ) /\ S =/= (/) ) -> ( R |`s |^| S ) e. DivRing ) |
| 15 |
|
issdrg |
|- ( |^| S e. ( SubDRing ` R ) <-> ( R e. DivRing /\ |^| S e. ( SubRing ` R ) /\ ( R |`s |^| S ) e. DivRing ) ) |
| 16 |
1 9 14 15
|
syl3anbrc |
|- ( ( R e. DivRing /\ S C_ ( SubDRing ` R ) /\ S =/= (/) ) -> |^| S e. ( SubDRing ` R ) ) |